Unlocking the Gate: Keys to Understanding Zika Virus Interactions with Human Cell Receptors

Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46(5):509–20. https://doi.org/10.1016/0035-9203(52)90042-4.

Article  CAS  PubMed  Google Scholar 

Wang HW, Li HH, Wu SC, Tang CK, Yu HY, Chang YC, et al. CLEC5A mediates Zika virus-induced testicular damage. J Biomed Sci. 2023;30(1):12. https://doi.org/10.1186/s12929-023-00906-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martins MM, Medronho RA, Cunha A. Zika virus in Brazil and worldwide: a narrative review. Paediatr Int Child Health. 2021;41(1):28–35. https://doi.org/10.1080/20469047.2020.1776044.

Article  PubMed  Google Scholar 

Bhardwaj U, Pandey N, Rastogi M, Singh SK. Gist of Zika Virus pathogenesis. Virology. 2021;560:86–95. https://doi.org/10.1016/j.virol.2021.04.008.

Article  CAS  PubMed  Google Scholar 

Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med (Lond). 2022;22(1):9–13. https://doi.org/10.7861/clinmed.2021-0791.

Article  PubMed  Google Scholar 

Freitas DA, Souza-Santos R, Carvalho LMA, Barros WB, Neves LM, Brasil P, et al. Congenital Zika syndrome: A systematic review. PLoS ONE. 2020;15(12):e0242367. https://doi.org/10.1371/journal.pone.0242367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Cabezas V, Ruiz-Molinero C, Nunez-Moraleda B, Jimenez-Rejano JJ, Chillon-Martinez R, Moral-Munoz JA. Guillain-Barre syndrome and Zika infection: identifying leading producers, countries relative specialization and collaboration. FEMS Microbiol Lett. 2019;366(5). https://doi.org/10.1093/femsle/fnz035.

Kuno G, Chang GJ. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152(4):687–96. https://doi.org/10.1007/s00705-006-0903-z.

Article  CAS  PubMed  Google Scholar 

Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nat Immunol. 2018;19(11):1189–98. https://doi.org/10.1038/s41590-018-0210-3.

Article  CAS  PubMed  Google Scholar 

Miner JJ, Diamond MS. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe. 2017;21(2):134–42. https://doi.org/10.1016/j.chom.2017.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreira J, Peixoto TM, Siqueira AM, Lamas CC. Sexually acquired Zika virus: a systematic review. Clin Microbiol Infect. 2017;23(5):296–305. https://doi.org/10.1016/j.cmi.2016.12.027.

Article  CAS  PubMed  Google Scholar 

Wu H, Huang XY, Sun MX, Wang Y, Zhou HY, Tian Y, et al. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat Commun. 2023;14(1):5541. https://doi.org/10.1038/s41467-023-41158-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sirohi D, Kuhn RJ. Zika virus structure, maturation, and receptors. J Infect Dis. 2017;216(suppl_10):S935–44. https://doi.org/10.1093/infdis/jix515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, et al. Integrin alphavbeta5 internalizes zika virus during neural stem cells infection and provides a promising target for antiviral therapy. Cell Rep. 2020;30(4):969-83 e4. https://doi.org/10.1016/j.celrep.2019.11.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franz AW, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7(7):3741–67. https://doi.org/10.3390/v7072795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007;7:9. https://doi.org/10.1186/1471-2180-7-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog. 2014;10(2):e1003931. https://doi.org/10.1371/journal.ppat.1003931.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu K, Qian Y, Jung YS, Zhou B, Cao R, Shen T, et al. mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol. 2017;91(10). https://doi.org/10.1128/JVI.01348-16.

Hsu PL, Jou J, Tsai SJ. TYRO3: A potential therapeutic target in cancer. Exp Biol Med (Maywood). 2019;244(2):83–99. https://doi.org/10.1177/1535370219828195.

Article  CAS  PubMed  Google Scholar 

Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. https://doi.org/10.1186/s12943-019-1090-3.

Article  PubMed  PubMed Central  Google Scholar 

Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A. 2011;108(20):8426–31. https://doi.org/10.1073/pnas.1019030108.

Article  PubMed  PubMed Central  Google Scholar 

Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 2013;20(1):64–76. https://doi.org/10.1038/cdd.2012.93.

Article  CAS  PubMed  Google Scholar 

Bohan D, Maury W. Enveloped RNA virus utilization of phosphatidylserine receptors: Advantages of exploiting a conserved, widely available mechanism of entry. PLoS Pathog. 2021;17(9):e1009899. https://doi.org/10.1371/journal.ppat.1009899.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem Cell. 2016;18(5):591–6. https://doi.org/10.1016/j.stem.2016.03.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57. https://doi.org/10.1016/j.chom.2012.08.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richard AS, Shim BS, Kwon YC, Zhang R, Otsuka Y, Schmitt K, et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A. 2017;114(8):2024–9. https://doi.org/10.1073/pnas.1620558114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100(5):575–85. https://doi.org/10.1016/s0092-8674(00)80693-5.

Article  CAS  PubMed  Google Scholar 

Chen S-T, Lin Y-L, Huang M-T, Wu M-F, Cheng S-C, Lei H-Y, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453(7195):672–6. https://doi.org/10.1038/nature07013.

Article  CAS 

Comments (0)

No login
gif