Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46(5):509–20. https://doi.org/10.1016/0035-9203(52)90042-4.
Article CAS PubMed Google Scholar
Wang HW, Li HH, Wu SC, Tang CK, Yu HY, Chang YC, et al. CLEC5A mediates Zika virus-induced testicular damage. J Biomed Sci. 2023;30(1):12. https://doi.org/10.1186/s12929-023-00906-6.
Article CAS PubMed PubMed Central Google Scholar
Martins MM, Medronho RA, Cunha A. Zika virus in Brazil and worldwide: a narrative review. Paediatr Int Child Health. 2021;41(1):28–35. https://doi.org/10.1080/20469047.2020.1776044.
Bhardwaj U, Pandey N, Rastogi M, Singh SK. Gist of Zika Virus pathogenesis. Virology. 2021;560:86–95. https://doi.org/10.1016/j.virol.2021.04.008.
Article CAS PubMed Google Scholar
Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med (Lond). 2022;22(1):9–13. https://doi.org/10.7861/clinmed.2021-0791.
Freitas DA, Souza-Santos R, Carvalho LMA, Barros WB, Neves LM, Brasil P, et al. Congenital Zika syndrome: A systematic review. PLoS ONE. 2020;15(12):e0242367. https://doi.org/10.1371/journal.pone.0242367.
Article CAS PubMed PubMed Central Google Scholar
Perez-Cabezas V, Ruiz-Molinero C, Nunez-Moraleda B, Jimenez-Rejano JJ, Chillon-Martinez R, Moral-Munoz JA. Guillain-Barre syndrome and Zika infection: identifying leading producers, countries relative specialization and collaboration. FEMS Microbiol Lett. 2019;366(5). https://doi.org/10.1093/femsle/fnz035.
Kuno G, Chang GJ. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152(4):687–96. https://doi.org/10.1007/s00705-006-0903-z.
Article CAS PubMed Google Scholar
Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nat Immunol. 2018;19(11):1189–98. https://doi.org/10.1038/s41590-018-0210-3.
Article CAS PubMed Google Scholar
Miner JJ, Diamond MS. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe. 2017;21(2):134–42. https://doi.org/10.1016/j.chom.2017.01.004.
Article CAS PubMed PubMed Central Google Scholar
Moreira J, Peixoto TM, Siqueira AM, Lamas CC. Sexually acquired Zika virus: a systematic review. Clin Microbiol Infect. 2017;23(5):296–305. https://doi.org/10.1016/j.cmi.2016.12.027.
Article CAS PubMed Google Scholar
Wu H, Huang XY, Sun MX, Wang Y, Zhou HY, Tian Y, et al. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat Commun. 2023;14(1):5541. https://doi.org/10.1038/s41467-023-41158-0.
Article CAS PubMed PubMed Central Google Scholar
Sirohi D, Kuhn RJ. Zika virus structure, maturation, and receptors. J Infect Dis. 2017;216(suppl_10):S935–44. https://doi.org/10.1093/infdis/jix515.
Article CAS PubMed PubMed Central Google Scholar
Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, et al. Integrin alphavbeta5 internalizes zika virus during neural stem cells infection and provides a promising target for antiviral therapy. Cell Rep. 2020;30(4):969-83 e4. https://doi.org/10.1016/j.celrep.2019.11.020.
Article CAS PubMed PubMed Central Google Scholar
Franz AW, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7(7):3741–67. https://doi.org/10.3390/v7072795.
Article CAS PubMed PubMed Central Google Scholar
Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007;7:9. https://doi.org/10.1186/1471-2180-7-9.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog. 2014;10(2):e1003931. https://doi.org/10.1371/journal.ppat.1003931.
Article CAS PubMed PubMed Central Google Scholar
Liu K, Qian Y, Jung YS, Zhou B, Cao R, Shen T, et al. mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol. 2017;91(10). https://doi.org/10.1128/JVI.01348-16.
Hsu PL, Jou J, Tsai SJ. TYRO3: A potential therapeutic target in cancer. Exp Biol Med (Maywood). 2019;244(2):83–99. https://doi.org/10.1177/1535370219828195.
Article CAS PubMed Google Scholar
Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. https://doi.org/10.1186/s12943-019-1090-3.
Article PubMed PubMed Central Google Scholar
Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A. 2011;108(20):8426–31. https://doi.org/10.1073/pnas.1019030108.
Article PubMed PubMed Central Google Scholar
Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 2013;20(1):64–76. https://doi.org/10.1038/cdd.2012.93.
Article CAS PubMed Google Scholar
Bohan D, Maury W. Enveloped RNA virus utilization of phosphatidylserine receptors: Advantages of exploiting a conserved, widely available mechanism of entry. PLoS Pathog. 2021;17(9):e1009899. https://doi.org/10.1371/journal.ppat.1009899.
Article CAS PubMed PubMed Central Google Scholar
Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem Cell. 2016;18(5):591–6. https://doi.org/10.1016/j.stem.2016.03.012.
Article CAS PubMed PubMed Central Google Scholar
Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57. https://doi.org/10.1016/j.chom.2012.08.009.
Article CAS PubMed PubMed Central Google Scholar
Richard AS, Shim BS, Kwon YC, Zhang R, Otsuka Y, Schmitt K, et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A. 2017;114(8):2024–9. https://doi.org/10.1073/pnas.1620558114.
Article CAS PubMed PubMed Central Google Scholar
Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100(5):575–85. https://doi.org/10.1016/s0092-8674(00)80693-5.
Article CAS PubMed Google Scholar
Chen S-T, Lin Y-L, Huang M-T, Wu M-F, Cheng S-C, Lei H-Y, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453(7195):672–6. https://doi.org/10.1038/nature07013.
Comments (0)