Pharmacopoeia Commission of People’s Republic of China (2020) Pharmacopoeia of the People’s Republic of China (Part 1), 1st edn. Chin Med Sci Technol Press, Beijing, p 249
Nam JW, Seo EK (2012) Structural characterization and biological effects of constituents of the seeds of Alpinia katsumadai (Alpina Katsumadai Seed). Nat Prod Commun 7(6):795–798. https://doi.org/10.1177/1934578X1200700626
Article CAS PubMed Google Scholar
Hu X, Wang D, Yu FL, Zhang YB, Xie XL, Huang M, He JC, Pang YX (2020) Herbal textual research of Alpinia katsumadai. Chin J Exp Tradit Med Form 26(21):210–219. https://doi.org/10.13422/j.cnki.syfjx.20202066
El-Haddad AE, Farag MA (2024). Alpinia katsumadai seed from a condiment to ethnomedicine to nutraceutical, a comprehensive review of its chemistry and health benefits. J Tradit Complement Med (in press). https://doi.org/10.1016/j.jtcme.2024.11.010
An WX, Zhang YX, Lai HL, Zhang YY, Zhang HM, Zhao G, Liu MH, Li Y, Lin XK, Cao SS (2022) Alpinia katsumadai Hayata induces growth inhibition and autophagyrelated apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells. Oncol Rep 48(2):1–15. https://doi.org/10.3892/or.2022.8353
Liang XY, Chen JM, Jiang CW, Ke JX, Wang CM, Li L (2024) A whitening composition and its preparation method and application (P). China patent: CN116077411A
Lee SE, Shin HT, Hwang HJ, Kim JH (2003) Antioxidant activity of extracts from Alpinia katsumadai seed. Phytother Res 17(9):1041–1047. https://doi.org/10.1002/ptr.1291
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J (2023) Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 11:1158198. https://doi.org/10.3389/fchem.2023.1158198
Article CAS PubMed PubMed Central Google Scholar
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 97(10):2499–2574. https://doi.org/10.1007/s00204-023-03562-9
Article CAS PubMed PubMed Central Google Scholar
Szymanska R, Pospisil P, Kruk J (2016) Plant-derived antioxidants in disease prevention. Oxid Med Cell Longev 2016:1920208. https://doi.org/10.1155/2016/1920208
Article PubMed PubMed Central Google Scholar
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Munoz-Munoz J, Saboury AA (2023) Targeting tyrosinase in hyperpigmentation: current status, limitations and future promises. Biochem Pharmacol 212:115574. https://doi.org/10.1016/j.bcp.2023.115574
Article CAS PubMed Google Scholar
Kim HD, Choi H, Abekura F, Park JY, Yang WS, Yang SH, Kim CH (2023) Naturally-occurring tyrosinase inhibitors classified by enzyme kinetics and copper chelation. Int J Mol Sci. https://doi.org/10.3390/ijms24098226
Li LY, Tang YR, Li X, Zhou T, Song QH, Li AY (2023) Mechanism of skin whitening through San-Bai decoction-induced tyrosinase inhibition and discovery of natural products targeting tyrosinase. Medicine (Baltimore) 102(13):e33420. https://doi.org/10.1097/MD.0000000000033420
Article CAS PubMed Google Scholar
Rahaman MM, Hossain R, Herrera-Bravo J, Islam MT, Atolani O, Adeyemi OS, Owolodun OA, Kambizi L, Dastan SD, Calina D, Sharifi-Rad J (2023) Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: an update. Food Sci Nutr 11(4):1657–1670. https://doi.org/10.1002/fsn3.3217
Article PubMed PubMed Central Google Scholar
Munteanu IG, Constantin A (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22(7):3380. https://doi.org/10.3390/ijms22073380
Article CAS PubMed PubMed Central Google Scholar
Bräm S, Evelyn W (2017) Recent advances in effect-directed enzyme assays based on thin-layer chromatography. Phytochem Anal 28(2):74–86. https://doi.org/10.1002/pca.2669
Article CAS PubMed Google Scholar
Wang M, Zhang YR, Wang RJ, Wang ZB, Yang BY, Kuang HX (2021) An evolving technology that integrates classical methods with continuous technological developments: thin-layer chromatography bioautography. Molecules 26(15):4647. https://doi.org/10.3390/molecules26154647
Article CAS PubMed PubMed Central Google Scholar
Li ZH, Bai X, Ma QL, Aisa HA, Maiwulanjiang M (2019) Detection of antibacterial and antioxidant compounds in the essential oil of Schizonepeta annua (Pall.) Schischk. using high-performance thin-layer chromatography–direct bioautography and gas chromatography–quadrupole time-of-flight mass spectrometry. J Planar Chromatogr-Mod TLC 32(5):359–364. https://doi.org/10.1556/1006.2019.32.5.2
Temiz B, Agalar HG (2022) Evaluation of radical scavenging and anti-tyrosinase activity of some Citrus fruits cultivated in Turkey via in vitro methods and high-performance thin-layer chromatography-effect-directed analysis. J Planar Chromatogr-Mod TLC 35(2):127–138. https://doi.org/10.1007/s00764-022-00168-2
Ristivojević PM, Morlock GE (2018) Effect-directed classification of biological, biochemical and chemical profiles of 50 German beers. Food Chem 260:344–353. https://doi.org/10.1016/j.foodchem.2018.03.127
Article CAS PubMed Google Scholar
Móricz ÁM, Ott PG, Morlock GE (2018) Discovered acetylcholinesterase inhibition and antibacterial activity of polyacetylenes in tansy root extract via effect-directed chromatographic fingerprints. J Chromatogr A 1543:73–80. https://doi.org/10.1016/j.chroma.2018.02.038
Article CAS PubMed Google Scholar
Tan GY, Huang Q, Shen QH, Wu MH, Deng J, Cao H, Qian ZM (2022) Rapid fingerprint analysis of Alpiniae Katsumadai Semen by HPLC. Pharm Today 32(6):409–411+417. https://doi.org/10.12048/j.issn.1674-229X.2022.06.002
Chen J, Huang Q, He ZB, Tan GY, Zou YS, Xie JY, Qian ZM (2023) Screening of tyrosinase, xanthine oxidase, and alpha-glucosidase inhibitors from Polygoni Cuspidati Rhizoma et Radix by ultrafiltration and HPLC analysis. Molecules 28(10):4170. https://doi.org/10.3390/molecules28104170
Article CAS PubMed PubMed Central Google Scholar
Zhou JG, Tang QJ, Wu T, Cheng ZH (2017) Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem Anal 28(2):115–124. https://doi.org/10.1002/pca.2666
Article CAS PubMed Google Scholar
Zampini IC, Ordonez RM, Isla MI (2010) Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS PharmSciTech 11(3):1159–1163. https://doi.org/10.1208/s12249-010-9484-y
Article CAS PubMed PubMed Central Google Scholar
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281(13):8981–8990. https://doi.org/10.1074/jbc.M509785200
Article CAS PubMed Google Scholar
Li HX, He ZB, Shen QH, Fan WF, Tan GY, Zou YS, Mei QX, Qian ZM (2021) Rapid screening alpha-glucosidase inhibitors from Polygoni Vivipari Rhizoma by multi-step matrix solid-phase dispersion, ultrafiltration and HPLC. Molecules 26(20):6111. https://doi.org/10.3390/molecules26206111
Article CAS PubMed PubMed Central Google Scholar
Ramos L (2024) Current trends in the determination of organic compounds in foodstuffs using matrix solid phase dispersion. TrAC, Trends Anal Chem 172:117601. https://doi.org/10.1016/j.trac.2024.117601
Qian ZM, Wu Z, Li CH, Tan GY, Hu HK, Li WJ (2020) A green liquid chromatography method for rapid determination of ergosterol in edible fungi based on matrix solid-phase dispersion extraction and a core-shell column. Anal Methods 12(26):3337–3343. https://doi.org/10.1039/d0ay00714e
Article CAS PubMed Google Scholar
Abuelizz HA, Anouar E, Marzouk M, Taie HAA, Ahudhaif A, Al-Salahi R (2020) DFT study and radical scavenging activity of 2-phenoxypyridotriazolo pyrimidines by DPPH, ABTS, FRAP and reducing power capacity. Chem Pap 74(9):2893–2899. https://doi.org/10.1007/s11696-020-01126-0
Comments (0)