Screening tyrosinase inhibitors and antioxidants from Alpiniae Katsumadai Semen extraction by thin-layer chromatography‒bioautography and liquid chromatography‒mass spectrometry

Pharmacopoeia Commission of People’s Republic of China (2020) Pharmacopoeia of the People’s Republic of China (Part 1), 1st edn. Chin Med Sci Technol Press, Beijing, p 249

Google Scholar 

Nam JW, Seo EK (2012) Structural characterization and biological effects of constituents of the seeds of Alpinia katsumadai (Alpina Katsumadai Seed). Nat Prod Commun 7(6):795–798. https://doi.org/10.1177/1934578X1200700626

Article  CAS  PubMed  Google Scholar 

Hu X, Wang D, Yu FL, Zhang YB, Xie XL, Huang M, He JC, Pang YX (2020) Herbal textual research of Alpinia katsumadai. Chin J Exp Tradit Med Form 26(21):210–219. https://doi.org/10.13422/j.cnki.syfjx.20202066

Article  CAS  Google Scholar 

El-Haddad AE, Farag MA (2024). Alpinia katsumadai seed from a condiment to ethnomedicine to nutraceutical, a comprehensive review of its chemistry and health benefits. J Tradit Complement Med (in press). https://doi.org/10.1016/j.jtcme.2024.11.010

An WX, Zhang YX, Lai HL, Zhang YY, Zhang HM, Zhao G, Liu MH, Li Y, Lin XK, Cao SS (2022) Alpinia katsumadai Hayata induces growth inhibition and autophagyrelated apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells. Oncol Rep 48(2):1–15. https://doi.org/10.3892/or.2022.8353

Article  CAS  Google Scholar 

Liang XY, Chen JM, Jiang CW, Ke JX, Wang CM, Li L (2024) A whitening composition and its preparation method and application (P). China patent: CN116077411A

Lee SE, Shin HT, Hwang HJ, Kim JH (2003) Antioxidant activity of extracts from Alpinia katsumadai seed. Phytother Res 17(9):1041–1047. https://doi.org/10.1002/ptr.1291

Article  PubMed  Google Scholar 

Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J (2023) Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 11:1158198. https://doi.org/10.3389/fchem.2023.1158198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 97(10):2499–2574. https://doi.org/10.1007/s00204-023-03562-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szymanska R, Pospisil P, Kruk J (2016) Plant-derived antioxidants in disease prevention. Oxid Med Cell Longev 2016:1920208. https://doi.org/10.1155/2016/1920208

Article  PubMed  PubMed Central  Google Scholar 

Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Munoz-Munoz J, Saboury AA (2023) Targeting tyrosinase in hyperpigmentation: current status, limitations and future promises. Biochem Pharmacol 212:115574. https://doi.org/10.1016/j.bcp.2023.115574

Article  CAS  PubMed  Google Scholar 

Kim HD, Choi H, Abekura F, Park JY, Yang WS, Yang SH, Kim CH (2023) Naturally-occurring tyrosinase inhibitors classified by enzyme kinetics and copper chelation. Int J Mol Sci. https://doi.org/10.3390/ijms24098226

Li LY, Tang YR, Li X, Zhou T, Song QH, Li AY (2023) Mechanism of skin whitening through San-Bai decoction-induced tyrosinase inhibition and discovery of natural products targeting tyrosinase. Medicine (Baltimore) 102(13):e33420. https://doi.org/10.1097/MD.0000000000033420

Article  CAS  PubMed  Google Scholar 

Rahaman MM, Hossain R, Herrera-Bravo J, Islam MT, Atolani O, Adeyemi OS, Owolodun OA, Kambizi L, Dastan SD, Calina D, Sharifi-Rad J (2023) Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: an update. Food Sci Nutr 11(4):1657–1670. https://doi.org/10.1002/fsn3.3217

Article  PubMed  PubMed Central  Google Scholar 

Munteanu IG, Constantin A (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22(7):3380. https://doi.org/10.3390/ijms22073380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bräm S, Evelyn W (2017) Recent advances in effect-directed enzyme assays based on thin-layer chromatography. Phytochem Anal 28(2):74–86. https://doi.org/10.1002/pca.2669

Article  CAS  PubMed  Google Scholar 

Wang M, Zhang YR, Wang RJ, Wang ZB, Yang BY, Kuang HX (2021) An evolving technology that integrates classical methods with continuous technological developments: thin-layer chromatography bioautography. Molecules 26(15):4647. https://doi.org/10.3390/molecules26154647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li ZH, Bai X, Ma QL, Aisa HA, Maiwulanjiang M (2019) Detection of antibacterial and antioxidant compounds in the essential oil of Schizonepeta annua (Pall.) Schischk. using high-performance thin-layer chromatography–direct bioautography and gas chromatography–quadrupole time-of-flight mass spectrometry. J Planar Chromatogr-Mod TLC 32(5):359–364. https://doi.org/10.1556/1006.2019.32.5.2

Article  CAS  Google Scholar 

Temiz B, Agalar HG (2022) Evaluation of radical scavenging and anti-tyrosinase activity of some Citrus fruits cultivated in Turkey via in vitro methods and high-performance thin-layer chromatography-effect-directed analysis. J Planar Chromatogr-Mod TLC 35(2):127–138. https://doi.org/10.1007/s00764-022-00168-2

Article  CAS  Google Scholar 

Ristivojević PM, Morlock GE (2018) Effect-directed classification of biological, biochemical and chemical profiles of 50 German beers. Food Chem 260:344–353. https://doi.org/10.1016/j.foodchem.2018.03.127

Article  CAS  PubMed  Google Scholar 

Móricz ÁM, Ott PG, Morlock GE (2018) Discovered acetylcholinesterase inhibition and antibacterial activity of polyacetylenes in tansy root extract via effect-directed chromatographic fingerprints. J Chromatogr A 1543:73–80. https://doi.org/10.1016/j.chroma.2018.02.038

Article  CAS  PubMed  Google Scholar 

Tan GY, Huang Q, Shen QH, Wu MH, Deng J, Cao H, Qian ZM (2022) Rapid fingerprint analysis of Alpiniae Katsumadai Semen by HPLC. Pharm Today 32(6):409–411+417. https://doi.org/10.12048/j.issn.1674-229X.2022.06.002

Article  CAS  Google Scholar 

Chen J, Huang Q, He ZB, Tan GY, Zou YS, Xie JY, Qian ZM (2023) Screening of tyrosinase, xanthine oxidase, and alpha-glucosidase inhibitors from Polygoni Cuspidati Rhizoma et Radix by ultrafiltration and HPLC analysis. Molecules 28(10):4170. https://doi.org/10.3390/molecules28104170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou JG, Tang QJ, Wu T, Cheng ZH (2017) Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem Anal 28(2):115–124. https://doi.org/10.1002/pca.2666

Article  CAS  PubMed  Google Scholar 

Zampini IC, Ordonez RM, Isla MI (2010) Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS PharmSciTech 11(3):1159–1163. https://doi.org/10.1208/s12249-010-9484-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281(13):8981–8990. https://doi.org/10.1074/jbc.M509785200

Article  CAS  PubMed  Google Scholar 

Li HX, He ZB, Shen QH, Fan WF, Tan GY, Zou YS, Mei QX, Qian ZM (2021) Rapid screening alpha-glucosidase inhibitors from Polygoni Vivipari Rhizoma by multi-step matrix solid-phase dispersion, ultrafiltration and HPLC. Molecules 26(20):6111. https://doi.org/10.3390/molecules26206111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramos L (2024) Current trends in the determination of organic compounds in foodstuffs using matrix solid phase dispersion. TrAC, Trends Anal Chem 172:117601. https://doi.org/10.1016/j.trac.2024.117601

Article  CAS  Google Scholar 

Qian ZM, Wu Z, Li CH, Tan GY, Hu HK, Li WJ (2020) A green liquid chromatography method for rapid determination of ergosterol in edible fungi based on matrix solid-phase dispersion extraction and a core-shell column. Anal Methods 12(26):3337–3343. https://doi.org/10.1039/d0ay00714e

Article  CAS  PubMed  Google Scholar 

Abuelizz HA, Anouar E, Marzouk M, Taie HAA, Ahudhaif A, Al-Salahi R (2020) DFT study and radical scavenging activity of 2-phenoxypyridotriazolo pyrimidines by DPPH, ABTS, FRAP and reducing power capacity. Chem Pap 74(9):2893–2899. https://doi.org/10.1007/s11696-020-01126-0

Article  CAS 

Comments (0)

No login
gif