Differential DNA methylation in response to host environment changes in

Anaka M, Lynn A, Mcginn P, Lloyd V (2009) Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 219:59–66. https://doi.org/10.1007/s00427-008-0267-3

Article  PubMed  Google Scholar 

Bulut B, Aydinli Z, Türktaş-Erken M (2020) MSAP analysis reveals diverse epigenetic statuses in opium poppy varieties with different benzyisoquinoline alkaloid content. Turk J Biol 44:103–109. https://doi.org/10.3906/biy-1911-69

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casals F, Cáceres M, Ruiz A (2003) The Foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Biol Evol 20:674–685. https://doi.org/10.1093/molbev/msg070

Article  CAS  PubMed  Google Scholar 

Deobagkar D, Deshpande A, Chatterjee S, Kelkar A (2004) CpC methylation is present in Drosophila melanogaster and undergoes changes during its life cycle. Drosoph Inf Serv 87:1–4

Google Scholar 

Deshmukh S et al (2018) Levels of DNA cytosine methylation in the Drosophila genome. PeerJ, 6, e5119. https://doi.org/10.7717/peerj.5119

Doherty T, Roth T (2016) Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain. Dev Psychopathol 28:1229–1243. https://doi.org/10.1017/S095457941600081X

Article  PubMed  PubMed Central  Google Scholar 

Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194. https://doi.org/10.1101/gr.8.3.186

Article  CAS  PubMed  Google Scholar 

Fanara JJ, Fontdevila A, Hasson E (1999) Oviposition preference, viability, developmental time and body size in the cactophilic sibling species Drosophila koepferae and D. buzzatii in association to their natural hosts. Evol Ecol 13:173–190. https://doi.org/10.1111/j.0014-3820.2001.tb00774.x

Article  Google Scholar 

Fitz-James MH, Cavalli G (2022) Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet 23:325–341. https://doi.org/10.1038/s41576-021-00438-5

Article  CAS  PubMed  Google Scholar 

Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:1–9. https://doi.org/10.1186/1471-2156-15-2

Article  CAS  Google Scholar 

Garcia RN, D’Ávila MF, Robe LJ, Loreto ELDS, Panzera Y, Heredia FOD, Valente VLDS (2007) First evidence of methylation in the genome of Drosophila willistoni. Genetica 131:91–105. https://doi.org/10.1007/s10709-006-9116-3

Article  CAS  PubMed  Google Scholar 

Glastad K, Gokhale K, Liebig J, Goodisman MAD (2016) The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Sci Rep 6:37110. https://doi.org/10.1038/srep37110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glastad KM, Hunt BG, Goodisman MAD (2019) Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu Rev Entomol 64:185–203. https://doi.org/10.1146/annurev-ento-011118-111914

Article  CAS  PubMed  Google Scholar 

González-Benito ME, Ibáñez MÁ, Pirredda M, Mira S, Martín C (2020) Application of the MSAP technique to evaluate epigenetic changes in plant conservation. Int J Mol Sci 21:7459. https://doi.org/10.3390/ijms21207459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarino F, Cicatelli A, Brundu G, Improta G, Triassi M, Castiglione S (2019) The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS ONE 14:e0215096. https://doi.org/10.1371/journal.pone.0215096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

CAS  Google Scholar 

Hara M, Kitamura T, Fukui H, Tabata M (1993) Induction of berberine biosynthesis by cytokinins in Thalictrum minus cell suspension cultures. Plant Cell Rep 12:70–73. https://doi.org/10.1007/BF00241937

Article  CAS  PubMed  Google Scholar 

Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x

Article  CAS  PubMed  Google Scholar 

Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP (2021) More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 28:58–72. https://doi.org/10.1186/s12929-021-00754-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hutchins AP, Pei D (2015) Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull (Beijing) 60:1722–1733. https://doi.org/10.1007/s11434-015-0905-x

Article  CAS  PubMed  Google Scholar 

Kamble SM, Debaje P, Ranveer RC, Sahoo AK (2017) Kamble SM, Debaje P, Ranveer RC, Sahoo AK (2017) Nutritional importance of cactus: a review. Trends Biosci. 10(37):7668–7677

Google Scholar 

Kircher HW, Heed WB, Russel JS, Grove J (1967) Senita cactus alkaloids: their significance to sonorant desert Drosophila ecology. J Insect Physiol 13:1869–1874

Article  CAS  Google Scholar 

Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540. https://doi.org/10.1038/35046205

Article  CAS  PubMed  Google Scholar 

Manfrin MH, Sene FM (2006) Cactophilic Drosophila in South America: a model for evolutionary studies. Genetica 126:57–75. https://doi.org/10.1007/s10709-005-1432-5

Article  PubMed  Google Scholar 

Marzo M, Puig M, Ruiz A (2008) The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci USA 105:2957–2962. https://doi.org/10.1073/pnas.0712110105

Article  PubMed  PubMed Central  Google Scholar 

Mi S, Chen S, Li W, Fang L, Yu Y (2021) Effects of sperm DNA methylation on domesticated animal performance and perspectives on cross-species epigenetics in animal breeding. Anim Front 11:39–47. https://doi.org/10.1093/af/vfab053

Article  PubMed  PubMed Central  Google Scholar 

Moraes EM, Sene FM (2007) Microsatellite and morphometric variation in Drosophila gouveai: the relative importance of historical and current factors in shaping the genetic population structure. J Zool Syst Evol Res 45:336–344. https://doi.org/10.1111/j.1439-0469.2007.00411.x

Article  Google Scholar 

Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:47–58. https://doi.org/10.1093/hmg/ddi114

Article  CAS  Google Scholar 

Olerup O, Zetterquist H (1992) HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225–235. https://doi.org/10.1111/j.1399-0039.1992.tb01940.x

Article  CAS  PubMed  Google Scholar 

Oliveira SA, Machado MFPS, Prioli AJ, Mangolin CA (1995) In vitro propagation of Cereus peruvianus Mill. (Cactaceae). Vitro Cell Dev Biol Plant 31:47–50

Article  Google Scholar 

Panis DND, Padró J, Furió-Tarí P, Tarazona S, Carmona PSM, Soto IM, Dopazo H, Conesa A, Hasson E (2016) Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila. Mol Ecol 25:4534–4550. https://doi.org/10.1111/mec.13785

Article  CAS  PubMed  Google Scholar 

Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in excel. Population Genetic Software for Teaching and Research—An Update. Bioinf Appl Note 28:2537–2539. http://doi.

Comments (0)

No login
gif