Ball N et al (2019) Parkinson’s disease and the environment. Front Neurol 10:218
Article PubMed PubMed Central Google Scholar
Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriat Med 36(1):1–12
DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther 40(8):504
Thal DR, Tredici KD, Braak H (2004) Neurodegeneration in normal brain aging and disease. Sci Aging Knowl Environ 2004(23):26
Risiglione P et al (2021) Alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease: the emerging role of VDAC. Biomolecules 11(5):718
Article CAS PubMed PubMed Central Google Scholar
Chang K-H, Chen C-M (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants 9(7):597
Article CAS PubMed PubMed Central Google Scholar
Dong-Chen Xu et al (2023) Signaling pathways in Parkinson’s disease: molecu- lar mechanisms and therapeutic interventions. Signal Transduct Target Ther 8(1):73
Article PubMed PubMed Central Google Scholar
Yuan H et al (2010) Treatment strategies for Parkinson’s disease. Neuro-sci Bullet 26(1):66
Bonifati V (2013) Genetics of Parkinson’s disease–state of the art. Parkinsonism Relat Disord 20(2014):S23–S28
Dong Na, Zhang X, Liu Q (2017) Identification of therapeutic tar- gets for Parkinson’s disease via bioinformatics analysis. Mol Med Rep 15(2):731–735
Article CAS PubMed Google Scholar
Yin Xi et al (2021) Identification of potential miRNA-mRNA regulatory network contributing to Parkinson’s disease. Parkinson’s Dis 2022:2877728
Celorrio M et al (2017) GPR55: a therapeutic target for Parkinson’s disease? Neuropharmacology 125:319–332
Article CAS PubMed Google Scholar
Stoker TB, Barker RA (2020) Recent developments in the treatment of Parkinson’s disease. F1000Research. https://doi.org/10.12688/f1000research.25634.1
Article PubMed PubMed Central Google Scholar
Gandolfo LC, Speed TP (2018) RLE plots: visualizing unwanted variation in high dimensional data. PloS one 13(2):e0191629
Article PubMed PubMed Central Google Scholar
Gatto L et al (2015) Visualization of proteomics data using R and bioconductor. Proteomics 15(8):1375–1389
Article CAS PubMed PubMed Central Google Scholar
Pradervand S et al (2009) Impact of normalization on miRNA microarray expression profiling. RNA 15(3):493–501
Article CAS PubMed PubMed Central Google Scholar
Klaus B (2016) An end to end workflow for differential gene expression using Affymetrix microarrays. F1000Research. https://doi.org/10.12688/f1000research.8967.2
KBaSRaM Lewis et al (2020) EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.8.0
Chen S et al (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890
Article PubMed PubMed Central Google Scholar
Blankenberg D, Hillman-Jackson J (2014) Analysis of next-generation sequencing data using Galaxy. Stem Cell Transcript Netw Methods Protocols 2014:21–43
Pertea M et al (2015) StringTie enables improved reconstruction of a tran- scriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295
Article CAS PubMed PubMed Central Google Scholar
Frazee AC et al (2015) Ballgown bridges the gap between transcriptome as- sembly and expression analysis. Nat Biotechnol 33(3):243–246
Article CAS PubMed PubMed Central Google Scholar
Friedlander MR et al (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucl Acids Res 40(1):37–52
Rifqi Rafsanjani M (2021) Analysing and identifying miRNAs from RNA-seq data using miRDeep2 tool in Galaxy, a practical guide. bioRxiv 2021–10
Doyle M et al (2023) 2: RNA-seq counts to genes
Abdullah T (2018) Algorithm and workflow of miRDB. Bioinform Rev 4(9):9–13
Sherman BT et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucl Acids Res 50(W1):W216–W221
Article CAS PubMed PubMed Central Google Scholar
Zhou Z et al (2007) Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharma-ceutically relevant targets. J Chem Inf Model 47(4):1599–1608
Article CAS PubMed PubMed Central Google Scholar
Bordoli L et al (2009) Protein structure homology modeling using SWISS- MODEL workspace. Nat Protoc 4(1):1–13
Article CAS PubMed Google Scholar
Madhavi Sastry G et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Design 27:221–234
Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inform Model 49(2):377–389
Bhachoo J, Beuming T (2017) Investigating protein–peptide interactions using the Schr¨odinger computational suite. Model Peptide-protein Inter- Actions Methods Protocols. https://doi.org/10.1007/978-1-4939-6798-8_14
Vemula V et al (2023) Fragment-based design and MD simulations of human papilloma virus-16 E6 protein inhibitors. J Biomol Struct Dyn 42:1–10
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717
Article PubMed PubMed Central Google Scholar
James Abraham M et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25
Zhu X, Lopes PEM, MacKerell Jr AD (2012) Recent developments and applications of the CHARMM force fields. Wiley Interdiscipl Rev Comput Mol Sci 2(1):167–185
Onufriev AV, Izadi S (2018) Water models for biomolecular simulations. Wiley Interdiscipl Rev Comput Mol Sci 8(2):e1347
Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461
Article CAS PubMed PubMed Central Google Scholar
Kumari R et al (2014) g mmpbsa A GROMACS tool for high-throughput MM- PBSA calculations. J Chem Inf Model 54(7):1951–1962
Comments (0)