Monoamine neurochemistry, behavior, and microhabitat contribute to male coquí frog modes: silent, territorial, and paternal

Allison JD (1992) Acoustic modulation of neural activity in the preoptic area and ventral hypothalamus of the green treefrog (Hyla cinerea). J Comp Physiol A 171(3):387–395. https://doi.org/10.1007/bf00223968

Article  CAS  PubMed  Google Scholar 

Allison JD, Wilczynski W (1991) Thalamic and midbrain auditory projections to the preoptic area and ventral hypothalamus in the green treefrog (Hyla cinerea). Brain Behav Evol 38(6):322–331. https://doi.org/10.1159/000114398

Article  CAS  PubMed  Google Scholar 

Aman TK, Shen RY, Haj-Dahmane S (2007) D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance. J Pharmacol Exp Ther 320:376–385. https://doi.org/10.1124/jpet.106.111690

Article  CAS  PubMed  Google Scholar 

Azizi SA (2020) Monoamines: dopamine, Norepinephrine, and Serotonin, Beyond Modulation, Switches that alter the state of Target Networks. Neuroscientist 1073858420974336. https://doi.org/10.1177/1073858420974336

Ball JN (1981) Hypothalamic control of the pars distalis in fishes, amphibians, and reptiles. Gen Comp Endocrinol 44:135–170. https://doi.org/10.1016/0016-6480(81)90243-4

Article  CAS  PubMed  Google Scholar 

Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacol 38(8):1083–1152. https://doi.org/10.1016/s0028-3908(99)00010-6

Article  CAS  Google Scholar 

Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. https://doi.org/10.1016/j.brainresrev.2007.10.013

Article  CAS  PubMed  Google Scholar 

Blanchard RJ, Markhamk C, Blanchard DC (2006) Aggression and defense, neurohormonal mechanisms of. Encyclopedia Cogn Sci. https://doi.org/10.1002/0470018860.s0044

Article  Google Scholar 

Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M (2016) Serotonin, amygdala and fear: assembling the puzzle. Front Neural Circuits 10:24. https://doi.org/10.3389/fncir.2016.00024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyd SK (1994) Arginine Vasotocin Facilitation of Advertisement Calling and call Phonotaxis in Bullfrogs. Horm Behav 28:232–240. https://doi.org/10.1006/hbeh.1994.1020

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2) 248– 54. https://doi.org/10.1006/abio.1976.9999

Burmeister SS (2017) Neurobiology of female mate choice in frogs: auditory filtering and valuation. Integr Comp Biol 57(4):857–864. https://doi.org/10.1093/icb/icx098

Article  CAS  PubMed  Google Scholar 

Burmeister SS, Moncalvo VGR, Pfennig KS (2017) Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads. J Exp Biol 220(17):3135–3141. https://doi.org/10.1242/jeb.159954

Article  PubMed  PubMed Central  Google Scholar 

Burmeister SS, Moncalvo VGR, Pfennig KS (2020) Differential encoding of signals and preferences by noradrenaline in the anuran brain. J Exp Biol 223(18):1–6. https://doi.org/10.1242/jeb.214148

Article  Google Scholar 

Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463(1–3):235–272. https://doi.org/10.1016/s0014-2999(03)01285-8

Article  CAS  PubMed  Google Scholar 

Castellano S, Marconi V, Zanollo V, Berto G (2009) Alternative mating tactics in the Italian treefrog, Hyla intermedia. Behav Ecol Sociobiol 63(8):1109–1118. https://doi.org/10.1007/s00265-009-0756-z

Article  Google Scholar 

Cecchi M, Khoshbouei H, Morilak DA (2002) Modulatory effects of norepinephrine, acting on alpha1 receptors in the central nucleus of the amygdala, on behavioral and neuroendocrine responses to acute immobilization stress. Neuropharmacol 43(7):1139–1147. https://doi.org/10.1016/s0028-3908(02)00292-7

Article  CAS  Google Scholar 

Clayton EC, Williams CL (2000) Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks. Behav Brain Res 112(1–2):151–158. https://doi.org/10.1016/s0166-4328(00)00178-9

Article  CAS  PubMed  Google Scholar 

Dahlbom SJ, Backström T, Lundstedt-Enkel K, Winberg S (2012) Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio). Behav Brain Res 228(2):333–338. https://doi.org/10.1016/j.bbr.2011.12.011

Article  CAS  PubMed  Google Scholar 

de Boer SF, Olivier B, Veening J, Koolhaas JM (2015) The neurobiology of offensive aggression: revealing a modular view. Physiol Behav 146:111–127

Article  PubMed  Google Scholar 

Dierickx K (1974) Identification of adenohypophysiotropic neurohormone producing cells in Rana temporaria. In: Knowles F, Vollrath L (eds) Neurosecretion - the final neuroendocrine pathway. Springer, Berlin, Heidelberg, New York, pp 170–181. https://doi.org/10.1007/978-3-662-12587-8_18

Chapter  Google Scholar 

Dragovich AY, Borinskaya SA (2019) Genetic and genomic basis of aggressive behavior. Russ J Genet 55(12):1445–1459. https://doi.org/10.1134/s1022795419090059

Article  CAS  Google Scholar 

Fellers GM (1979) Aggression, territoriality, and mating behaviour in north American treefrogs. Anim Behav 27:107–119

Article  Google Scholar 

Ferry B, Roozendaal B, McGaugh JL (1999) Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol Psychiatry 46(9):1140–1152. https://doi.org/10.1016/s0006-3223(99)00157-2

Article  CAS  PubMed  Google Scholar 

Fischer EK, O’Connell LA (2020) Hormonal and neural correlates of care in active versus observing poison frog parents. Horm Behav 120:104696. https://doi.org/10.1016/j.yhbeh.2020.104696

Article  CAS  PubMed  Google Scholar 

Fischer EK, Alvarez H, Lagerstrom KM, McKinney JE, Petrillo R, Ellis G, O’Connell LA (2020) Neural correlates of winning and losing fights in poison frog tadpoles. Physiol Behav 223:112973. https://doi.org/10.1016/j.physbeh.2020.112973

Article  CAS  PubMed  Google Scholar 

Freudenmacher L, Schauer M, Walkowiak W, von Twickel A (2020a) Refinement of the dopaminergic system of anuran amphibians based on connectivity with habenula, basal ganglia, limbic system, pallium, and spinal cord. J Comp Neurol 528(6):972–988. https://doi.org/10.1002/cne.24793

Article  CAS  PubMed  Google Scholar 

Freudenmacher L, von Twickel A, Walkowiak W (2020b) The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. J Comp Neurol 528(5):705–728. https://doi.org/10.1002/cne.24777

Article  PubMed  Google Scholar 

Godwin J, Thompson R (2012) Nonapeptides and social behavior in fishes. Horm Behav 61(3):230–238. https://doi.org/10.1016/j.yhbeh.2011.12.016

Article  CAS  PubMed  Google Scholar 

Grieb ZA, Lonstein LS (2022) Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood. Philos Trans R Soc Lond B Biol Sci 377(1858):20210062. https://doi.org/10.1098/rstb.2021.0062

Article  PubMed  PubMed Central  Google Scholar 

Gross MR, Charnov EL (1980) Alternative male life histories in bluegill sunfish. Proc Nat Acad Sci 77(11):6937–6940. https://doi.org/10.1073/pnas.77.11.6937

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haj-Dahmane S (2001) D2-like dopamine receptor activation excites rat dorsal raphe 5-HT neurons in vitro. Eur J Neurosci 14:25–34. https://doi.org/10.1046/j.0953-816x.2001.01616.x

Article  Google Scholar 

Hayashi K (1985) Alternative mating strategies in the water strider Gerris Elongatus (Heteroptera, Gerridae).

Comments (0)

No login
gif