Comparative analysis of the structure and crystallin composition of the lenses of freshwater fish and gastropods with respect to their vision

Bantseev V, Moran KL, Dixon DG et al (2004) Optical properties, mitochondria, and sutures of lenses of fishes: a comparative study of nine species. Can J Zool 82:86–93. https://doi.org/10.1139/z03-223

Article  Google Scholar 

Bassnett S, Šikić H (2017) The lens growth process. Prog Retin Eye Res 60:181–200. https://doi.org/10.1016/j.preteyeres.2017.04.001

Article  PubMed  PubMed Central  Google Scholar 

Bassnett S, Shi Y, Vrensen GFJM (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 366:1250–1264. https://doi.org/10.1098/rstb.2010.0302

Article  PubMed  PubMed Central  Google Scholar 

Bobkova MV, Gál J, Zhukov VV et al (2004) Variations in the retinal designs of pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (I). Invertebr Biol 123:101–115. https://doi.org/10.1111/j.1744-7410.2004.tb00146.x

Article  Google Scholar 

Cai J, Townsend JP, Dodson TC et al (2017) Eye patches: Protein assembly of index-gradient squid lenses. Science 357:564–569. https://doi.org/10.1126/science.aal2674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cárdenas ERB, Correa SM, Contreras Guzman R et al (2011) Eye Lens Structure of the Octopus Enteroctopus megalocyathus: Evidence of Growth. J Shellfish Res 30:199–204. https://doi.org/10.2983/035.030.0201

Article  Google Scholar 

Chen Y, Zhao H, Schuck P, Wistow G (2014) Solution properties of γ-crystallins: compact structure and low frictional ratio are conserved properties of diverse γ-crystallins. Protein Sci 23:76–87. https://doi.org/10.1002/pro.2395

Article  CAS  PubMed  Google Scholar 

Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual Ecology. Princeton University Press

Book  Google Scholar 

Dahm R, Schonthaler HB, Soehn AS et al (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85:74–89. https://doi.org/10.1016/j.exer.2007.02.015

Article  CAS  PubMed  Google Scholar 

Dominova IN, Zhukov VV (2022) Mollusc crystallins: physical and chemical properties and phylogenetic analysis. Diversity (Basel) 14:827. https://doi.org/10.3390/d14100827

Article  CAS  Google Scholar 

Dominova IN, Husenova AA, Kotova VV et al (2023) Some components of the serotonergic system in the eyes of two species of freshwater molluscs. J Evol Biochem Physiol 59:1954–1965. https://doi.org/10.1134/S0022093023060054

Article  CAS  Google Scholar 

Gagnon YL, Söderberg B, Kröger RHH (2008) Effects of the peripheral layers on the optical properties of spherical fish lenses. J Opt Soc Am A Opt Image Sci vis 25:2468–2475. https://doi.org/10.1364/josaa.25.002468

Article  PubMed  Google Scholar 

Gagnon YL, Sutton TT, Johnsen S (2013) Visual acuity in pelagic fishes and mollusks. Vision Res 92:1–9. https://doi.org/10.1016/j.visres.2013.08.007

Article  PubMed  Google Scholar 

Gál J, Bobkova MV, Zhukov VV et al (2004) Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (II). Invertebr Biol 123:116–127. https://doi.org/10.1111/j.1744-7410.2004.tb00147.x

Article  Google Scholar 

Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the expasy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607

Chapter  Google Scholar 

Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717. https://doi.org/10.1387/ijdb.041900wg

Article  PubMed  Google Scholar 

Gómez S, Bottari C, Egidi F et al (2022) Amide spectral fingerprints are hydrogen bonding-mediated. J Phys Chem Lett 13:6200–6207. https://doi.org/10.1021/acs.jpclett.2c01277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greiling TMS, Houck SA, Clark JI (2009) The zebrafish lens proteome during development and aging. Mol vis 15:2313–2325

CAS  PubMed  PubMed Central  Google Scholar 

Gur D, Nicolas J-D, Brumfeld V et al (2018) The dual functional reflecting iris of the zebrafish. Adv Sci (Weinh) 5:1800338. https://doi.org/10.1002/advs.201800338

Article  CAS  PubMed  Google Scholar 

Gustafsson OSE, Ekström P, Kröger RHH (2012) Sturgeons, sharks, and rays have multifocal crystalline lenses and similar lens suspension apparatuses. J Morphol 273:746–753. https://doi.org/10.1002/jmor.20020

Article  PubMed  Google Scholar 

Hamilton PV, Ardizzoni SC, Penn JS (1983) Eye structure and optics in the intertidal snail, Littorina irrorata. J Comp Physiol 152:435–445. https://doi.org/10.1007/BF00606433

Article  Google Scholar 

Hanke FD, Kelber A (2020) The eye of the common octopus (Octopus vulgaris). Front Physiol 10:1637. https://doi.org/10.3389/fphys.2019.01637

Article  PubMed  PubMed Central  Google Scholar 

Harracksingh AN, Bandura J, Morizumi T et al (2024) Functional characterization of optic photoreception in Lymnaea stagnalis. PLoS ONE 19:e0313407. https://doi.org/10.1371/journal.pone.0313407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho Y, Huang F (2002) Raman spectroscopy of galactosemic rat lens crystalline: correlation of microscopic changes of lens proteins at molecular levels with gross cataractous alteration. Jnl Chinese Chemical Soc 49:283–290. https://doi.org/10.1002/jccs.200200044

Article  CAS  Google Scholar 

Jagger WS, Sands PJ (1999) A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res 39:2841–2852. https://doi.org/10.1016/s0042-6989(99)00012-7

Article  CAS  PubMed  Google Scholar 

Jonasova K, Kozmik Z (2008) Eye evolution: lens and cornea as an upgrade of animal visual system. Semin Cell Dev Biol 19:71–81. https://doi.org/10.1016/j.semcdb.2007.10.005

Article  PubMed  Google Scholar 

Kapitunova AI, Dominova IN, Zhukov VV (2022) γM crystallin genes in the eye lens of a juvenile common carp Cyprinus carpio: transcription levels and phylogenetic aspect. J Evol Biochem Physiol 58:1025–1040. https://doi.org/10.1134/S0022093022040081

Article  CAS  Google Scholar 

Katagiri N, Katagiri Y (1998) Fine structure of the dioptric apparatus in the stalk eye of Onchidium verruculatum (Gastropoda, Stylommatophora): a distinct lamellar substructure of the lens. Zoomorphology 118:13–21. https://doi.org/10.1007/s004350050052

Article  Google Scholar 

Kengne-Momo RP, Daniel Ph, Lagarde F et al (2012) Protein interactions investigated by the raman spectroscopy for biosensor applications. Int J Spectrosc 2012:1–7. https://doi.org/10.1155/2012/462901

Article  CAS  Google Scholar 

Koenig KM, Sun P, Meyer E, Gross JM (2016) Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 143:3168–3181. https://doi.org/10.1242/dev.134254

Article  CAS  PubMed  Google Scholar 

Kozłowski TM, Kröger RHH (2019a) Constant lens fiber cell thickness in fish suggests crystallin transport to denucleated cells. Vision Res 162:29–34. https://doi.org/10.1016/j.visres.2019.06.008

Article  PubMed  Google Scholar 

Kozłowski TM, Kröger RHH (2019b) Visualization of adult fish lens fiber cells. Exp Eye Res 181:1–4. https://doi.org/10.1016/j.exer.2018.12.013

Article  CAS  PubMed  Google Scholar 

Kröger RHH (2013) Optical plasticity in fish lenses. Prog Retin Eye Res 34:78–88. https://doi.org/10.1016/j.preteyeres.2012.12.001

Article 

Comments (0)

No login
gif