Bantseev V, Moran KL, Dixon DG et al (2004) Optical properties, mitochondria, and sutures of lenses of fishes: a comparative study of nine species. Can J Zool 82:86–93. https://doi.org/10.1139/z03-223
Bassnett S, Šikić H (2017) The lens growth process. Prog Retin Eye Res 60:181–200. https://doi.org/10.1016/j.preteyeres.2017.04.001
Article PubMed PubMed Central Google Scholar
Bassnett S, Shi Y, Vrensen GFJM (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 366:1250–1264. https://doi.org/10.1098/rstb.2010.0302
Article PubMed PubMed Central Google Scholar
Bobkova MV, Gál J, Zhukov VV et al (2004) Variations in the retinal designs of pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (I). Invertebr Biol 123:101–115. https://doi.org/10.1111/j.1744-7410.2004.tb00146.x
Cai J, Townsend JP, Dodson TC et al (2017) Eye patches: Protein assembly of index-gradient squid lenses. Science 357:564–569. https://doi.org/10.1126/science.aal2674
Article CAS PubMed PubMed Central Google Scholar
Cárdenas ERB, Correa SM, Contreras Guzman R et al (2011) Eye Lens Structure of the Octopus Enteroctopus megalocyathus: Evidence of Growth. J Shellfish Res 30:199–204. https://doi.org/10.2983/035.030.0201
Chen Y, Zhao H, Schuck P, Wistow G (2014) Solution properties of γ-crystallins: compact structure and low frictional ratio are conserved properties of diverse γ-crystallins. Protein Sci 23:76–87. https://doi.org/10.1002/pro.2395
Article CAS PubMed Google Scholar
Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual Ecology. Princeton University Press
Dahm R, Schonthaler HB, Soehn AS et al (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85:74–89. https://doi.org/10.1016/j.exer.2007.02.015
Article CAS PubMed Google Scholar
Dominova IN, Zhukov VV (2022) Mollusc crystallins: physical and chemical properties and phylogenetic analysis. Diversity (Basel) 14:827. https://doi.org/10.3390/d14100827
Dominova IN, Husenova AA, Kotova VV et al (2023) Some components of the serotonergic system in the eyes of two species of freshwater molluscs. J Evol Biochem Physiol 59:1954–1965. https://doi.org/10.1134/S0022093023060054
Gagnon YL, Söderberg B, Kröger RHH (2008) Effects of the peripheral layers on the optical properties of spherical fish lenses. J Opt Soc Am A Opt Image Sci vis 25:2468–2475. https://doi.org/10.1364/josaa.25.002468
Gagnon YL, Sutton TT, Johnsen S (2013) Visual acuity in pelagic fishes and mollusks. Vision Res 92:1–9. https://doi.org/10.1016/j.visres.2013.08.007
Gál J, Bobkova MV, Zhukov VV et al (2004) Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (II). Invertebr Biol 123:116–127. https://doi.org/10.1111/j.1744-7410.2004.tb00147.x
Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the expasy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607
Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717. https://doi.org/10.1387/ijdb.041900wg
Gómez S, Bottari C, Egidi F et al (2022) Amide spectral fingerprints are hydrogen bonding-mediated. J Phys Chem Lett 13:6200–6207. https://doi.org/10.1021/acs.jpclett.2c01277
Article CAS PubMed PubMed Central Google Scholar
Greiling TMS, Houck SA, Clark JI (2009) The zebrafish lens proteome during development and aging. Mol vis 15:2313–2325
CAS PubMed PubMed Central Google Scholar
Gur D, Nicolas J-D, Brumfeld V et al (2018) The dual functional reflecting iris of the zebrafish. Adv Sci (Weinh) 5:1800338. https://doi.org/10.1002/advs.201800338
Article CAS PubMed Google Scholar
Gustafsson OSE, Ekström P, Kröger RHH (2012) Sturgeons, sharks, and rays have multifocal crystalline lenses and similar lens suspension apparatuses. J Morphol 273:746–753. https://doi.org/10.1002/jmor.20020
Hamilton PV, Ardizzoni SC, Penn JS (1983) Eye structure and optics in the intertidal snail, Littorina irrorata. J Comp Physiol 152:435–445. https://doi.org/10.1007/BF00606433
Hanke FD, Kelber A (2020) The eye of the common octopus (Octopus vulgaris). Front Physiol 10:1637. https://doi.org/10.3389/fphys.2019.01637
Article PubMed PubMed Central Google Scholar
Harracksingh AN, Bandura J, Morizumi T et al (2024) Functional characterization of optic photoreception in Lymnaea stagnalis. PLoS ONE 19:e0313407. https://doi.org/10.1371/journal.pone.0313407
Article CAS PubMed PubMed Central Google Scholar
Ho Y, Huang F (2002) Raman spectroscopy of galactosemic rat lens crystalline: correlation of microscopic changes of lens proteins at molecular levels with gross cataractous alteration. Jnl Chinese Chemical Soc 49:283–290. https://doi.org/10.1002/jccs.200200044
Jagger WS, Sands PJ (1999) A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res 39:2841–2852. https://doi.org/10.1016/s0042-6989(99)00012-7
Article CAS PubMed Google Scholar
Jonasova K, Kozmik Z (2008) Eye evolution: lens and cornea as an upgrade of animal visual system. Semin Cell Dev Biol 19:71–81. https://doi.org/10.1016/j.semcdb.2007.10.005
Kapitunova AI, Dominova IN, Zhukov VV (2022) γM crystallin genes in the eye lens of a juvenile common carp Cyprinus carpio: transcription levels and phylogenetic aspect. J Evol Biochem Physiol 58:1025–1040. https://doi.org/10.1134/S0022093022040081
Katagiri N, Katagiri Y (1998) Fine structure of the dioptric apparatus in the stalk eye of Onchidium verruculatum (Gastropoda, Stylommatophora): a distinct lamellar substructure of the lens. Zoomorphology 118:13–21. https://doi.org/10.1007/s004350050052
Kengne-Momo RP, Daniel Ph, Lagarde F et al (2012) Protein interactions investigated by the raman spectroscopy for biosensor applications. Int J Spectrosc 2012:1–7. https://doi.org/10.1155/2012/462901
Koenig KM, Sun P, Meyer E, Gross JM (2016) Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 143:3168–3181. https://doi.org/10.1242/dev.134254
Article CAS PubMed Google Scholar
Kozłowski TM, Kröger RHH (2019a) Constant lens fiber cell thickness in fish suggests crystallin transport to denucleated cells. Vision Res 162:29–34. https://doi.org/10.1016/j.visres.2019.06.008
Kozłowski TM, Kröger RHH (2019b) Visualization of adult fish lens fiber cells. Exp Eye Res 181:1–4. https://doi.org/10.1016/j.exer.2018.12.013
Article CAS PubMed Google Scholar
Kröger RHH (2013) Optical plasticity in fish lenses. Prog Retin Eye Res 34:78–88. https://doi.org/10.1016/j.preteyeres.2012.12.001
Comments (0)