Barber JR, Conner WE (2007) Acoustic mimicry in a predator prey interaction. PNAS 104:9331–9334. https://doi.org/10.1073/pnas.0703627104
Article CAS PubMed PubMed Central Google Scholar
Barber JR, Plotkin D, Rubin JJ, Homziak TN, Leavell BC, Peter R, Houlihan PR, Minera KA, Breinholt JW, Quirk-Royala B, Padrón PS, Nunez M, Kawahara AY (2022) Anti-bat ultrasound production in moths is globally and phylogenetically widespread. PNAS 119:e2117485119. https://doi.org/10.1073/pnas.2117485119
Article CAS PubMed PubMed Central Google Scholar
Blest AD, Collett TS, Pye JD (1963) The generation of ultrasonic signals by a new world arctiid moth. Proc R Soc Lond B 158:196–207. https://doi.org/10.1098/rspb.1963.0042
Choi R, Atkins G, Stout J (2012) The effects of injecting juvenile hormone III into the prothoracic ganglion on phonotaxis by female crickets Gryllus bimaculatus. Physiol Entomol 37:201–205. https://doi.org/10.1111/j.1365-3032.2011.00811.x
Conner WE (1987) Ultrasound: its role in the courtship of the arctiid moth, Cycnia tenera. Experientia 43:1029–1031. https://doi.org/10.1007/BF01952230
Conner WE (1999) Un chant D’Appel Amoureux’: acoustic communication in moths. J Exp Biol 202:1711–1723. https://doi.org/10.1242/jeb.202.13.1711
Conner WE, Corcoran AJ (2012) Sound strategies: the 65-Million-Year-Old battle between bats and insects. Annu Rev Entomol 57:21–39. https://doi.org/10.1146/annurev-ento-121510-133537
Article CAS PubMed Google Scholar
Corcoran AJ, Conner WE, Barber JR (2010) Anti-bat tiger moth sounds: form and function. Curr Zool 56:358–369. https://doi.org/10.1093/czoolo/56.3.358
Dowdy NJ, Conner WE (2016) Acoustic aposematism and evasive action in select chemically defended Arctiine (Lepidoptera: Erebidae) species: nonchalant or not?? PLoS ONE 11:e0152981. https://doi.org/10.1371/journal.pone.0152981
Article CAS PubMed PubMed Central Google Scholar
Dowdy NJ, Conner WE (2019) Characteristics of tiger moth (Erebidae: Arctiinae) anti-bat sounds can be predicted from tymbal morphology. Front Zool 16:45. https://doi.org/10.1186/s12983-019-0345-6
Article PubMed PubMed Central Google Scholar
Fernandez Y, Dowdy NJ, Conner WE (2020) Extreme duty cycles in the acoustic signals of tiger moths: sexual and natural selection operating in parallel. Integr Org Biol 2:obaa046. https://doi.org/10.1093/iob/obaa046
Article CAS PubMed Google Scholar
Fullard JH, Fenton MB (1977) Acoustic and behavioral analyses of the sounds produced by some species of some species of Nearctic Arctiidae (Lepidoptera). Can J Zool 55:1213–1224. https://doi.org/10.1139/z77-160
Koudele K, Stout J, Reichert D (1987) Factors which influence female crickets’ (Acheta domesticus) phonotactic and sexual responsiveness to males. Physiol Entomol 12:67–80. https://doi.org/10.1111/j.1365-3032.1987.tb00725.x
Loher W, Weber T, Huber F (1993) The effect of mating on phonotactic behaviour in Gryllus bimaculatus (De Geer). Physiol Entomol 18:57–66. https://doi.org/10.1111/j.1365-3032.1993.tb00449.x
Nakano R (2023) Multiple functions of ultrasonic courtship song in moths. In Acoustic Communication in Animals. In: Y. Seki (ed) Springer Nature Singapore Pte Ltd., pp 47–61. https://doi.org/10.1007/978-981-99-0831-8_3
Nakano R, Takanashi T, Skals N, Surlykke A, Ishikawa Y (2010) To females of a noctuid moth, male courtship songs are nothing more than Bat echolocation calls. Biol Lett 6:582–584. https://doi.org/10.1098/rsbl.2010.0058
Article PubMed PubMed Central Google Scholar
Nakano R, Takanashi T, Surlykke A, Skals N, Ishikawa Y (2013) Evolution of deceptive and true courtship songs in moths. Sci Rep 3:2003. https://doi.org/10.1038/srep02003
Article PubMed PubMed Central Google Scholar
Nakano R, Takanashi T, Surlykke A (2015) Moth hearing and sound communication. J Comp Physiol A 201:111–121. https://doi.org/10.1007/s00359-014-0945-8
Römer H (2021) Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments. J Comp Physiol A 207:303–319. https://doi.org/10.1007/s00359-021-01482-6
Römer H, Holderied M (2020) Decision making in the face of a deadly predator: high-amplitude behavioural thresholds can be adaptive for rainforest crickets under high background noise levels. Phil Trans R Soc B 375:20190471. https://doi.org/10.1098/rstb.2019.0471
Article PubMed PubMed Central Google Scholar
Sanderford MV (1992) Acoustic courtship communication of the Polka-dot wasp moth, Syntomeida epilais Walker (Lepidoptera, Arctiidae, Ctenuchinae). Dissertation, Wake Forest University
Sanderford MV (2009) Acoustic Courtship in the Arctiidae. In: Conner WE (ed) Tiger Moths and Woolly Bears: Behavior, Ecology, and Evolution of the Arctiidae, Oxford University Press, pp 193–206
Sanderford MV, Conner WE (1990) Courtship sounds of the polka-dot Wasp moth Syntomeida epilais. Naturwissenschaften 77:345–347. https://doi.org/10.1007/BF01138395
Sanderford MV, Conner WE (1995) Acoustic courtship communication in Syntomeida epilais Wlk. (Lepidoptera: Arctiidae, Ctenuchinae). J Insect Behav 8:19–31. https://doi.org/10.1007/BF01990967
Simmons RB, Conner WE (1996) Ultrasonic signals in the defense and courtship of euchaetes Egle drury and E. bolteri stretch (Lepidoptera: Arctiidae). J Insect Behav 9:909–919. https://doi.org/10.1007/BF02208978
Ter Hofstede HM, Ratcliffe JM (2016) Evolutionary escalation: the bat-moth arms race. J Exp Biol 219:1589–1602. https://doi.org/10.1242/jeb.086686
Comments (0)