Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17:295–318. https://doi.org/10.1080/08927014.2005.9522584)
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M (2018) Transfer of visual learning between a virtual and a real environment in honey bees: the role of active vision. Front Behav Neurosci 12:139. https://doi.org/10.3389/fnbeh.2018.00139)
Article PubMed PubMed Central Google Scholar
Buehlmann C, Dell-Cronin S, Diyalagoda Pathirannahelage A, Goulard R, Webb B, Niven JE, Graham P (2023) Impact of central complex lesions on innate and learnt visual navigation in ants. J Comp Physiol Neuroethol. 4.4 [JP] Sens. Neural Behav. Physiol. 209:737–746. (https://doi.org/10.1007/s00359-023-01613-1)
Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol A 151:521–543. https://doi.org/10.1007/bf00605469)
Collett TS, Zeil J (2018) Insect learning flights and walks. Curr Biol 28:R984–R988. https://doi.org/10.1016/j.cub.2018.04.050)
Article CAS PubMed Google Scholar
Dauzere-Peres O, Wystrach A (2024) Ants integrate proprioception as well as visual context and efference copies to make robust predictions. Nat Commun 15(1):10205
Article CAS PubMed PubMed Central Google Scholar
Deeti S, Cheng K (2021) Learning walks in an Australian desert ant, Melophorus bagoti. J Exp Biol 224:jeb242177. https://doi.org/10.1242/jeb.242177)
Article PubMed PubMed Central Google Scholar
Deeti S, McLean DJ, Cheng K (2024) Nest excavators’ learning walks in the Australian desert ant Melophorus bagoti. Anim Cogn 27:39. https://doi.org/10.1007/s10071-024-01877-3)
Article PubMed PubMed Central Google Scholar
Durier V, Graham P, Collett TS (2003) Snapshot memories and landmark guidance in wood ants. Curr Biol 13:1614–1618. (https://doi.org/10.1016/j.cub.2003.08.024)
Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol 219:3137–3145. https://doi.org/10.1242/jeb.140459)
Geng H, Lafon G, Avarguès-Weber A, Buatois A, Massou I, Giurfa M (2022) Visual learning in a virtual reality environment upregulates immediate early gene expression in the mushroom bodies of honey bees. Commun Biol 5:130. https://doi.org/10.1038/s42003-022-03075-8)
Article PubMed PubMed Central Google Scholar
Goulard R, Buehlmann C, Niven JE, Graham P, Webb B (2020) A motion compensation treadmill for untethered wood ants (Formica rufa): Evidence for transfer of orientation memories from free-walking training. J Exp Biol 223:jeb228601. https://doi.org/10.1242/jeb.228601)
Article PubMed PubMed Central Google Scholar
Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937. https://doi.org/10.1016/j.cub.2009.08.015)
Article CAS PubMed Google Scholar
Graham P, Philippides A (2017) Vision for navigation: what can we learn from ants? Arthropod Struct Dev 46:718–722. (https://doi.org/10.1016/j.asd.2017.07.001)
Grob R, Cunz OH, Grübel K, Pfeiffer K, Rössler W, Fleischmann PN (2022) Rotation of skylight polarization during learning walks is necessary to trigger neuronal plasticity in Cataglyphis ants. Proc. Biol. Sci. 289:20212499. (https://doi.org/10.1098/rspb.2021.2499)
Held R, Hein A (1963) Movement-produced stimulation in the development of visually guided behavior. J Comp Physiol Psychol 56:872–876. https://doi.org/10.1037/h0040546)
Article CAS PubMed Google Scholar
Jayatilaka P, Murray T, Narendra A, Zeil J (2018) The choreography of learning walks in the Australian Jack jumper ant Myrmecia croslandi. J Exp Biol 221:jeb185306. https://doi.org/10.1242/jeb.185306)
Kaushik PK, Olsson SB (2020) Using virtual worlds to understand insect navigation for bio-inspired systems. Curr Opin Insect Sci 42:97–104. https://doi.org/10.1016/j.cois.2020.09.010)
Kaushik PK, Renz M, Olsson SB (2020) Characterizing long-range search behavior in Diptera using complex 3D virtual environments. Proc. Natl. Acad. Sci. U. S. A. 117:12201–12207. (https://doi.org/10.1073/pnas.1912124117)
Kócsi Z, Murray T, Dahmen H, Narendra A, Zeil J (2020) The antarium: A reconstructed visual reality device for ant navigation research. Front Behav Neurosci 14:599374. https://doi.org/10.3389/fnbeh.2020.599374)
Article PubMed PubMed Central Google Scholar
Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371. https://doi.org/10.1016/j.cub.2010.06.035)
Nagaya N, Mizumoto N, Abe MS, Dobata S, Sato R, Fujisawa R (2017) Anomalous diffusion on the Servosphere: A potential tool for detecting inherent organismal movement patterns. PLoS ONE 12:e0177480. (https://doi.org/10.1371/journal.pone.0177480)
Naik H, Bastien R, Navab N, Couzin ID (2020) Animals in virtual environments. IEEE Trans Vis Comput Graph 26:2073–2083. https://doi.org/10.1109/tvcg.2020.2973063)
Narendra A, Ramirez-Esquivel F (2017) Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant. Philos Trans R Soc Lond B Biol Sci 372:20160068. https://doi.org/10.1098/rstb.2016.0068)
Article PubMed PubMed Central Google Scholar
Nicholson DJ, Judd SPD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838. https://doi.org/10.1242/jeb.202.13.1831)
Peckmezian T, Taylor PW (2015) A virtual reality paradigm for the study of visually mediated behavior and cognition in spiders. Anim Behav 107:87–95. https://doi.org/10.1016/j.anbehav.2015.06.018)
Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210:3763–3770. https://doi.org/10.1242/jeb.009563)
Sakiyama T (2022) Perception and recognition of a visual landmark on ant foraging. Artif Life Robot 27:640–643. https://doi.org/10.1007/s10015-022-00780-9)
Sakiyama T, Gunji YP (2013) Garden ant homing behavior in a maze task based on local visual cues. Insectes Soc 60:155–162. https://doi.org/10.1007/s00040-012-0279-x)
Sakiyama T, Suda K (2024) Movement during the acquisition of a visual landmark May be necessary for rapid learning in ants. J Comp Physiol A 210:75–81. https://doi.org/10.1007/s00359-023-01652-8)
Sakiyama T, Nagaya N, Fujisawa R (2021) Ant foragers might present variation and universal property in their movements. J Comp Physiol A 207:429–435. https://doi.org/10.1007/s00359-021-01484-4)
Schwarz S, Narendra A, Zeil J (2011) The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct Dev 40(2):128–134
Schwarz S, Julle-Daniere E, Morin L, Schultheiss P, Wystrach A, Ives J, Cheng K (2014) Desert ants (Melophorus bagoti) navigating with robustness to distortions of the natural panorama. Insectes Social 61:371–383
Schwarz S, Wystrach A, Cheng K (2017) Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route Sci Rep, 7(1):14161
Sommer S, von Beeren C, Wehner R (2008) Multiroute memories in desert ants. Proc Natl Acad Sci U S A 105:317–322. https://doi.org/10.1073/pnas.0710157104
Wehner R (2009) Architecture of the desert Ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12(September):85–96
Wehner R, Räber F (1979) Visual Spatial memory in desert ants, cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571. https://doi.org/10.1007/bf01953197)
Wystrach A, Beugnon G, Cheng K (2011a) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21 https://doi.org/10.1186/1742-9994-8-21
Wystrach A, Schwarz S, Schultheiss P, Beugnon G, Cheng K (2011b) Views, landmarks, and routes: how do desert ants negotiate an obstacle course? J Comp Physiol A 197:167–179
Wystrach A, Philippides A, Aurejac A, Cheng K, Graham P (2014) Visual scanning behaviors and their role in the navigation of the Australian desert ant Melophorus bagoti. J Comp Physiol A 200:615–626
Comments (0)