Ardiel EL, McDiarmid TA, Timbers TA, et al. 2018 Insights into the roles of CMK-1 and OGT-1 in interstimulus interval-dependent habituation in Caenorhabditis elegans. Proc. Biol. Sci. 285 20182084
Bertrand V and Hobert O 2009 Linking asymmetric cell division to the terminal differentiation program of postmitotic neurons in C. elegans. Dev. Cell 16 563–575
Article CAS PubMed PubMed Central Google Scholar
Brenner S 1974 The genetics of Caenorhabditis elegans. Genetics 77 71–94
Article CAS PubMed PubMed Central Google Scholar
Brini M, Calì T, Ottolini D, et al. 2014 Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71 2787–2814
Article CAS PubMed PubMed Central Google Scholar
Capotosti F, Guernier S, Lammers F, et al. 2011 O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144 376–388
Article CAS PubMed Google Scholar
Chen J, Dong X, Cheng X, et al. 2021 Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep. 34 108905
Article CAS PubMed Google Scholar
Christensen R, de la Torre-Ubieta L, Bonni A, et al. 2011 A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development 138 5257–5267
Article CAS PubMed PubMed Central Google Scholar
Colón-Ramos DA, Margeta MA and Shen K 2007 Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318 103–106
Article PubMed PubMed Central Google Scholar
Consortium CeDM 2012 large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 2 1415–1425
Dickinson DJ, Ward JD, Reiner DJ, et al. 2013 Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10 1028–1034
Article CAS PubMed PubMed Central Google Scholar
Dong X, Jin S and Shao Z 2020 Glia promote synaptogenesis through an IQGAP PES-7 in C. elegans. Cell Rep. 30 2614-2626.e2
Article CAS PubMed Google Scholar
El Mouridi S, Lecroisey C, Tardy P, et al. 2017 Reliable CRISPR/Cas9 genome engineering in Caenorhabditis elegans using a single efficient sgRNA and an easily recognizable phenotype. G3 7 1429–1437
Fan J, Ji T, Wang K, et al. 2020 A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans. elife 9 e55890
Forsythe ME, Love DC, Lazarus BD, et al. 2006 Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. USA 103 11952–11957
Article CAS PubMed PubMed Central Google Scholar
Friedland AE, Tzur YB, Esvelt KM, et al. 2013 Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10 741–743
Article CAS PubMed PubMed Central Google Scholar
Giles AC, Desbois M, Opperman KJ, et al. 2019 A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function. J. Biol. Chem. 294 6843–6856
Article CAS PubMed PubMed Central Google Scholar
Gupta S, Singhal NK, Ganesh S, et al. 2019 Extending arms of insulin resistance from diabetes to Alzheimer’s disease: identification of potential therapeutic targets. CNS Neurol. Disord. Drug Targets 18 172–184
Article CAS PubMed Google Scholar
Gyurko MD, Csermely P, Soti C, et al. 2015 Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory. Sci. Rep. 5 15084
Hanover JA, Forsythe ME, Hennessey PT, et al. 2005 A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl. Acad. Sci. USA 102 11266–11271
Article CAS PubMed PubMed Central Google Scholar
Hart GW, Slawson C, Ramirez-Correa G, et al. 2011 Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80 825–858
Article CAS PubMed PubMed Central Google Scholar
He X, Li Y, Chen Q, et al. 2022 O-GlcNAcylation and stablization of SIRT7 promote pancreatic cancer progression by blocking the SIRT7-REGγ interaction. Cell Death Differ. 29 1970–1981
Article CAS PubMed PubMed Central Google Scholar
Hendi A, Kurashina M and Mizumoto K 2019 Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell. Mol. Life Sci. 76 2719–2738
Article CAS PubMed PubMed Central Google Scholar
Issad T and Kuo M 2008 O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol. Metab. 19 380–389
Article CAS PubMed Google Scholar
Jínek M, Rehwinkel J, Lazarus BD, et al. 2004 The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat. Struct. Mol. Biol. 11 1001–1007
Kim K, Yoo HC, Kim BG, et al. 2022 O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Nat. Commun. 13 2904
Article CAS PubMed PubMed Central Google Scholar
Konzman D, Fukushige T, Dagnachew M, et al. 2022 O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet. 18 e1010273
Kwon ES, Narasimhan SD, Yen K, et al. 2010 A new DAF-16 isoform regulates longevity. Nature 466 498–502
Article CAS PubMed PubMed Central Google Scholar
Lans H, Rademakers S and Jansen G 2004 A network of stimulatory and inhibitory Gα-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167 1677–1687
Article CAS PubMed PubMed Central Google Scholar
Lassek M, Weingarten J and Volknandt W 2015 The synaptic proteome. Cell Tissue Res. 359 255–265
Article CAS PubMed Google Scholar
Lazarus MB, Nam Y, Jiang J, et al. 2011 Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469 564–567
Article CAS PubMed PubMed Central Google Scholar
Lee J, Kim KY, Lee J, et al. 2010 Regulation of dauer formation by O-GlcNAcylation in Caenorhabditis elegans. J. Biol. Chem. 285 2930–2939
Article CAS PubMed Google Scholar
Levine ZG, Potter SC, Joiner CM, et al. 2021 Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc. Natl. Acad. Sci. USA 118 e2016778118
Li LB, Lei H, Arey RN, et al. 2016 The neuronal kinesin UNC-104/KIF1A is a key regulator of synaptic aging and insulin signaling-regulated memory. Curr. Biol. 26 605–615
Article CAS PubMed PubMed Central Google Scholar
Lickteig KM, Duerr JS, Frisby DL, et al. 2001 Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J. Neurosci. 21 2001–2014
Article CAS PubMed PubMed Central Google Scholar
Lin CH, Tomioka M, Pereira S, et al. 2010 Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval. J. Neurosci. 30 8001–8011
Comments (0)