Use of model representations of convectional diffusion for determination of indicators of phosphate sorption and solubility in chernozem soils

Argotte-Ibarra, L., Barreiro-Quino, O. F., Ríos-Reyes, C. A., Henao-Martínez, J. A., & Castro-Salazar, H. T. (2022). Analysis of the solubility of phosphate rock from Aipe (Colombia) via formation of 2Na-EDTA complex. Chemosphere, 286(3), 131786.

Buehler, S., Oberson, A., Rao, I. M., Friesen, D. K., & Frossard, T. (2002). Sequential phosphorus extraction of a P-labeled oxisol under contrasting agricultural systems. Soil Science Society of America Journal, 66(3), 868–877.

Campos, M. D., Antonangelo, J. A., & Alleoni, L. R. F. (2016). Phosphorus sorption index in humid tropical soils. Soil and Tillage Research, 156, 110–118.

Chien, S. H. (1993). Solubility assessment for fertilizer containing phosphate rock. Fertilizer Research, 35, 93–99.

Eduah, J. O., Nartey, E. K., Abekoe, M. K., Henriksen, S. W., & Andersen, M. N. (2020). Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. Environmental Technology and Innovation, 17, 100572.

Filipović, V., Černe, M., Šimůnek, J., Filipović, L., Romić, M., Ondrašek, G., Bogunović, I., Mustać, I., Krevh, V., Ferenčević, A., Robinson, D., Palčić, I., Pasković, I., Ban, S. G., Užila, Z., & Ban, D. (2020). Modelling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar. Agronomy, 10(8), 1163.

Ghosal, P. K., & Chakraborty, T. (2012). Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resources and Environment, 2(4), 175–179.

Helfenstein, J., Jegminat, J., McLaren, T. I., & Frossard, E. (2018). Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences, 15(1), 105–114.

Kadyampakeni, D. M., Nkedi-Kizza, P., Morgan, K. T., & Schumann, A. W. (2017). Characterizing sorption and modeling phosphorus movement on Candler and Immokalee fine sand. Journal of Soil and Water Science, 1, 8–14.

Kedir, A. J., Nyiraneza, J., Hawboldt, K. A., McKenzie, D. B., & Unc, A. (2022). Phosphorus sorption capacity and its relationships with soil properties under podzolic soils of Atlantic Canada. Frontiers in Soil Science, 2, 931266.

Kovalenko, S. (2021). Spatial and temporal variability of mobile phosphorus content in the tilth layer of soils according to different methods. Agrochemistry and Soil Science, 92, 71–79.

Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A., & Leinweber, P. (2015). Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 178(1), 43–88.

Makowski, V., Julich, S., Feger, K.-H., & Julich, D. (2020). Soil phosphorus translocation via preferential flow pathways: A comparison of two sites with different phosphorus stocks. Frontiers in Forests and Global Change, 3, 48.

Messiga, A. J., Lam, C., & Li, Y. (2021). Phosphorus saturation index and water-extractable phosphorus in high-legacy phosphorus soils in Southern British Columbia, Canada. Canadian Journal of Soil Science, 101, 365–377.

Meyer, G., Frossard, E., Mäder, P., Nanzer, S., Randall, D. G., Udert, K. M., & Oberson, A. (2018). Water soluble phosphate fertilizers for crops grown in cal-careous soils – an outdated paradigm for recycled phosphorus fertilizers. Plant and Soil, 424(1–2), 367–388.

Nosko, B. (2017). On the formation of soil phosphate fund. Agrochemistry and Soil Science, 86, 87–92.

Nosko, B. (2018). Natural and anthropogenic evolution of the phosphate fund of soils of Ukraine. Agrochemistry and Soil Science, 87, 92–99.

Pogromska, Y. A. (2020). Influence of hydrothermal fluctuations and tillage methods on phosphate mobility in soil. Agrochemistry and Soil Science, 89, 71–82.

Raniro, H. R., Bettoni Teles, A. P., Adam, C., & Pavinato P. S. (2022). Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge. Journal of Environmental Management, 302, 113984.

Rupngam, T., Messiga, A. J., & Karam, A. (2023). Phosphorus mobility in heavily manured and waterlogged soil cultivated with ryegrass (Lolium multiflorum). Agronomy, 13(8), 2168.

Santos, W.O., Hesterberg, D., Mattiello, E. M., Vergütz, L., Barreto, M. S. C., Silva, I. R., & Souza, L. F. S. (2016). Increasing soluble phosphate species by treatment of phosphate rocks with acidic waste. Journal of Environmental Quality, 45(6), 1988–1997.

Syrovatko, K. V. (2007). Characterization of mobility indicators of strontium-90 sorption in chernozems. Agroecological Journal, 2, 62–68.

Teles, A. P. B., Rodrigues, M., & Pavinato, P. S. (2020). Solubility and efficiency of rock phosphate fertilizers partially acidulated with zeolite and pillared clay as additives. Agronomy, 10, 918.

Wild, A. (1964). Soluble phosphate in soil and uptake by plants. Nature, 203, 326–327.

Zhang, M., Li, C., Li, Y. C., & Harris, W. G. (2014). Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma, 232–234, 164–171.

Zubkovska, V. V. (2024). Estimation of the phosphate state of arable and fallow soils of different genesis according to indicators of phosphate buffering. AgroChemistry and Soil Science, 96, 12–19.

Comments (0)

No login
gif