Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications

Hultcrantz M, Ravn Landtblom A, Andréasson B, Samuelsson J, Dickman PW, Kristinsson SY, et al. Incidence of myeloproliferative neoplasms–trends by subgroup and age in a population-based study in Sweden. J Intern Med. 2020;287(4):448–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

Article  CAS  PubMed  Google Scholar 

James C, Ugo V, Le Couédic J-P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

Article  CAS  PubMed  Google Scholar 

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

Article  CAS  PubMed  Google Scholar 

Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

Article  CAS  PubMed  Google Scholar 

Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. https://doi.org/10.1056/NEJMoa1311347.

Article  CAS  PubMed  Google Scholar 

Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. https://doi.org/10.1056/NEJMoa1312542.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.

Article  PubMed  PubMed Central  Google Scholar 

Tefferi A, Lasho T, Finke C, Knudson R, Ketterling R, Hanson C, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7.

Article  CAS  PubMed  Google Scholar 

Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79.

Article  CAS  PubMed  Google Scholar 

Afshar N, Black BE, Paschal BM. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Cell Mol Biol. 2005;25(20):8844–53.

Article  CAS  Google Scholar 

Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66. https://doi.org/10.1042/BJ20081847.

Article  CAS  PubMed  Google Scholar 

Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. https://doi.org/10.1038/leu.2015.277.

Article  CAS  PubMed  Google Scholar 

Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35. https://doi.org/10.1182/blood-2015-11-681932.

Article  CAS  PubMed  Google Scholar 

Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307–16. https://doi.org/10.1182/blood-2015-09-671172.

Article  CAS  PubMed  Google Scholar 

Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24. https://doi.org/10.1182/blood-2015-11-679571.

Article  CAS  PubMed  Google Scholar 

Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the Thrombopoietin receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368–81. https://doi.org/10.1158/2159-8290.CD-15-1434.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nivarthi H, Chen D, Cleary C, Kubesova B, Jäger R, Bogner E, et al. Thrombopoietin receptor is required for the oncogenic function of CALR mutants. Leukemia. 2016;30(8):1759–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Achyutuni S, Nivarthi H, Majoros A, Hug E, Schueller C, Jia R, et al. Hematopoietic expression of a chimeric murine-human CALR oncoprotein allows the assessment of anti‐CALR antibody immunotherapies in vivo. Am J Hematol. 2021;96(6):698–707.

Article  CAS  PubMed  Google Scholar 

Araki M, Yang Y, Imai M, Mizukami Y, Kihara Y, Sunami Y, et al. Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia. 2019;33(1):122–31. https://doi.org/10.1038/s41375-018-0181-2.

Article  CAS  PubMed  Google Scholar 

Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018;131(7):782–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pecquet C, Chachoua I, Roy A, Balligand T, Vertenoeil G, Leroy E, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133(25):2669–81.

Article  CAS  PubMed  Google Scholar 

Papadopoulos N, Nedelec A, Derenne A, Sulea TA, Pecquet C, Chachoua I, et al. Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation. Nat Commun. 2023;14(1):1881. https://doi.org/10.1038/s41467-023-37277-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379(15):1416–30. https://doi.org/10.1056/NEJMoa1716614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nam AS, Kim KT, Chaligne R, Izzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by genotyping of Transcriptomes. Nature. 2019;571(7765):355–60. https://doi.org/10.1038/s41586-019-1367-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hermange G, Rakotonirainy A, Bentriou M, Tisserand A, El-Khoury M, Girodon F, et al. Inferring the initiation and development of myeloproliferative neoplasms. Proc Natl Acad Sci U S A. 2022;119(37):e2120374119. https://doi.org/10.1073/pnas.2120374119.

Article  PubMed  PubMed Central  Google Scholar 

Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134(18):1498–509.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stegelmann F, Teichmann LL, Heidel FH, Crodel CC, Ernst T, Kreil S, et al. Clinicohematologic and molecular response of essential thrombocythemia patients treated with pegylated interferon-alpha: a multi-center study of the German Study Group-Myeloproliferative Neoplasms (GSG-MPN). Leukemia. 2023;37(4):924–8.

Comments (0)

No login
gif