Hultcrantz M, Ravn Landtblom A, Andréasson B, Samuelsson J, Dickman PW, Kristinsson SY, et al. Incidence of myeloproliferative neoplasms–trends by subgroup and age in a population-based study in Sweden. J Intern Med. 2020;287(4):448–54.
Article CAS PubMed PubMed Central Google Scholar
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.
Article CAS PubMed Google Scholar
James C, Ugo V, Le Couédic J-P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.
Article CAS PubMed Google Scholar
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.
Article CAS PubMed Google Scholar
Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.
Article CAS PubMed Google Scholar
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. https://doi.org/10.1056/NEJMoa1311347.
Article CAS PubMed Google Scholar
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. https://doi.org/10.1056/NEJMoa1312542.
Article CAS PubMed PubMed Central Google Scholar
Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.
Article PubMed PubMed Central Google Scholar
Tefferi A, Lasho T, Finke C, Knudson R, Ketterling R, Hanson C, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7.
Article CAS PubMed Google Scholar
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79.
Article CAS PubMed Google Scholar
Afshar N, Black BE, Paschal BM. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Cell Mol Biol. 2005;25(20):8844–53.
Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66. https://doi.org/10.1042/BJ20081847.
Article CAS PubMed Google Scholar
Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. https://doi.org/10.1038/leu.2015.277.
Article CAS PubMed Google Scholar
Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35. https://doi.org/10.1182/blood-2015-11-681932.
Article CAS PubMed Google Scholar
Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307–16. https://doi.org/10.1182/blood-2015-09-671172.
Article CAS PubMed Google Scholar
Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24. https://doi.org/10.1182/blood-2015-11-679571.
Article CAS PubMed Google Scholar
Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the Thrombopoietin receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368–81. https://doi.org/10.1158/2159-8290.CD-15-1434.
Article CAS PubMed PubMed Central Google Scholar
Nivarthi H, Chen D, Cleary C, Kubesova B, Jäger R, Bogner E, et al. Thrombopoietin receptor is required for the oncogenic function of CALR mutants. Leukemia. 2016;30(8):1759–63.
Article CAS PubMed PubMed Central Google Scholar
Achyutuni S, Nivarthi H, Majoros A, Hug E, Schueller C, Jia R, et al. Hematopoietic expression of a chimeric murine-human CALR oncoprotein allows the assessment of anti‐CALR antibody immunotherapies in vivo. Am J Hematol. 2021;96(6):698–707.
Article CAS PubMed Google Scholar
Araki M, Yang Y, Imai M, Mizukami Y, Kihara Y, Sunami Y, et al. Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia. 2019;33(1):122–31. https://doi.org/10.1038/s41375-018-0181-2.
Article CAS PubMed Google Scholar
Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018;131(7):782–6.
Article CAS PubMed PubMed Central Google Scholar
Pecquet C, Chachoua I, Roy A, Balligand T, Vertenoeil G, Leroy E, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133(25):2669–81.
Article CAS PubMed Google Scholar
Papadopoulos N, Nedelec A, Derenne A, Sulea TA, Pecquet C, Chachoua I, et al. Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation. Nat Commun. 2023;14(1):1881. https://doi.org/10.1038/s41467-023-37277-3.
Article CAS PubMed PubMed Central Google Scholar
Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379(15):1416–30. https://doi.org/10.1056/NEJMoa1716614.
Article CAS PubMed PubMed Central Google Scholar
Nam AS, Kim KT, Chaligne R, Izzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by genotyping of Transcriptomes. Nature. 2019;571(7765):355–60. https://doi.org/10.1038/s41586-019-1367-0.
Article CAS PubMed PubMed Central Google Scholar
Hermange G, Rakotonirainy A, Bentriou M, Tisserand A, El-Khoury M, Girodon F, et al. Inferring the initiation and development of myeloproliferative neoplasms. Proc Natl Acad Sci U S A. 2022;119(37):e2120374119. https://doi.org/10.1073/pnas.2120374119.
Article PubMed PubMed Central Google Scholar
Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134(18):1498–509.
Article CAS PubMed PubMed Central Google Scholar
Stegelmann F, Teichmann LL, Heidel FH, Crodel CC, Ernst T, Kreil S, et al. Clinicohematologic and molecular response of essential thrombocythemia patients treated with pegylated interferon-alpha: a multi-center study of the German Study Group-Myeloproliferative Neoplasms (GSG-MPN). Leukemia. 2023;37(4):924–8.
Comments (0)