A novel deep learning-based pipeline architecture for pulp stone detection on panoramic radiographs

Patil SR, Ghani HA, Almuhaiza M, Al-Zoubi IA, Anil KN, Misra N, Raghuram P. Prevalence of pulp stones in a Saudi Arabian subpopulation: a cone-beam computed tomography study. Saudi Endodont J. 2018;8(2):93–8.

Article  Google Scholar 

Tassoker M, Magat G, Sener S. A comparative study of cone-beam computed tomography and digital panoramic radiography for detecting pulp stones. Imaging Sci Dent. 2018;48(3):201.

Article  PubMed  PubMed Central  Google Scholar 

Gurhan C, Saruhan E. Pulp stones: any relevance with the levels of serum calcium, parathyroid hormone, vitamin d and uric acid. Restorat Dent Endodont. 2024;49(2):e17.

Article  Google Scholar 

Mirah MA, Bafail A, Shaheen S, Baik A, Zaid BA, Alharbi A, Alahmadi O, Alharbi A Sr. Assessment of pulp stones among Western Saudi populations: a cross-sectional study. Cureus. 2023. https://doi.org/10.7759/cureus.46056.

Article  PubMed  PubMed Central  Google Scholar 

Ulatowska AP, Fernandes MC, Pietrzycka K, Koprowicz A, Klimek L, Souza RA, Pradebon M, de Figueiredo JAP. The pulp stones: morphological analysis in scanning electron microscopy and spectroscopic chemical quantification. Medicina (Kaunas). 2021;58(1):5.

Article  Google Scholar 

Yilmaz SG, Yilmaz F, Bayrakdar IS, Harorli A. The relationship between carotid artery calcification and pulp stone among hemodialysis patients: a retrospective study. Saudi J Kidney Dis Transplantat. 2019;30(4):755–63.

Article  Google Scholar 

Nachiappan S, Chandran A, Swathika B, Ganesan S, Mahaprasad A, Muddebihal F, Nayyar AS. Pulp stones: diagnostic significance in early diagnosis and radiographic correlation with ischemic heart diseases. Ind J Radiol Imag. 2021;31(02):277–83.

Article  Google Scholar 

de Romano BS, de Kublitski PMO, Juglair MM, Brancher JA, Baratto-Filho F, Michel-Crosato E, Gabardo MCL. Association between pulp stones and systemic diseases: a case-control study. ABCS Health Sci. 2024;49:e024211.

Article  Google Scholar 

Zhang Y, Ye F, Chen L, Xu F, Chen X, Wu H, Cao M, Li Y, Wang Y, Huang X. Children’s dental panoramic radiographs dataset for caries segmentation and dental disease detection. Sci Data. 2023;10(1):380.

Article  PubMed  PubMed Central  Google Scholar 

Dong S, Wang P, Abbas K. A survey on deep learning and its applications. Comput Sci Rev. 2021;40:100379.

Article  Google Scholar 

Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transact Neural Networ Learn Syst. 2022;33(12):6999–7019.

Article  Google Scholar 

Huang C, Wang J, Wang S, Zhang Y. A review of deep learning in dentistry. Neurocomputing. 2023;554:126629.

Article  Google Scholar 

Redmon J, Divvala SK, Girshick RB, Farhadi A. You only look once: Unified, real-time object detection. CoRR. 2015;1506.02640

Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

R. Girshick, J. Donahue, T. Darrell and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA. 2014. pp. 580–87.

Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference On Computer Vision. 2015. pp.1440–48.

Yuce F, Ozic MU, Tassoker M. Detection of pulpal calcifications on bite-wing radiographs using deep learning. Clin Oral Invest. 2023;27(6):2679–89.

Article  Google Scholar 

Altındag A, Bahrilli S, Celik O, Bayrakdar IS, Orhan K. The detection of pulp stones with automatic deep learning in panoramic radiographies: an Al pilot study. Diagnostics. 2024;14(9):890.

Article  PubMed  PubMed Central  Google Scholar 

Xie S, Girshick RB, Dollar P, Tu Z, He K. Aggregated residual transformations for deep neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. 1492–500.

He K, Zhang X, Ren S, SunJ. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770–8.

Prime: teeth detection and numbering Dataset. Roboflow. visited on 2024-05-08 (2023). https://universe.roboflow.com/prime-snf1v/ teeth-detection-and-numbering-agi2i

Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollar P. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland. 2014. pp. 740-55

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang, Karpathy A, Khosla A, Bernstein M. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.

Article  Google Scholar 

Jocher G, Chaurasia A, Qiu J. Ultralytics YOLO. 2023. https://github.com/ultralytics/ultralytics

Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Zheng Z, Wang P, Ren D, Liu W, Ye R, Hu Q, Zuo W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transact Cybernet. 2021;52(8):8574–86.

Article  Google Scholar 

Zhang H, Wang Y, Dayoub F, Sunderhauf N. VarifocalNet: An IoU-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. pp. 8514–23.

Li X, Wang W, Wu L, Chen S, Hu X, Li J, Tang J, Yang J. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Adv Neural Inf Process Syst. 2020;33:21002–12.

Google Scholar 

Bhat S, Birajdarn GK, Patil MD. A comprehensive survey of deep learning algorithms and applications in dental radiograph analysis. Healthcare Anal. 2023;4:100282.

Article  Google Scholar 

Shan T, Tay F, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232–44.

Article  PubMed  Google Scholar 

Ossowska A, Kusiak A, Swietlik D. Artificial intelligence in dentistry—Narrative review. Int J Environ Res Public Health. 2022;19(6):3449.

Article  PubMed  PubMed Central  Google Scholar 

Thurzo A, Urbanova W, Novak B, Czako L, Siebert T, Stano P, Marekova S, Fountoulaki G, Kosnacova H, Varga I. Where is the artificial intelligence applied in dentistry? systematic review and literature analysis. MDPI. 2022;10:1269.

Google Scholar 

Lee S, Kim D, Jeong HG. Detecting 17 fine-grained dental anomalies from panoramic dental radiography using artificial intelligence. Sci Rep. 2022;12(1):5172.

Article  PubMed  PubMed Central  Google Scholar 

Zhu J, Chen Z, Zhao J, Yu Y, Li X, Shi K, Zhang F, Yu F, Shi K, Sun Z. Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study. BMC Oral Health. 2023;23(1):358.

Article  PubMed  PubMed Central  Google Scholar 

Altındağ A, Uzun S, Bayrakdar İŞ, Çelik Ö. Detecting pulp stones with automatic deep learning in bitewing radiographs: a pilot study of artificial intelligence. Euro Annal Dental Sci. 2023;50(1):12–6.

Article  Google Scholar 

Chen T, Kornblith S, Norouzi M, & Hinton G. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR. 2020. pp.1597–1607.

Grill JB, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E, Valko M. Bootstrap your own latent-a new approach to self-supervised learning. Adv Neural Inf Process Syst. 2020;33:21271–84.

Google Scholar 

Comments (0)

No login
gif