Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375–88.
Article PubMed PubMed Central Google Scholar
Chen L, Ozato K. Innate Immune memory in hematopoietic Stem/Progenitor cells: myeloid-biased differentiation and the role of Interferon. Front Immunol. 2021;12:621333.
Article PubMed PubMed Central Google Scholar
Ferreira AV, Domiguéz-Andrés J, Netea MG. The role of cell metabolism in Innate Immune Memory. J Innate Immun. 2022;14:42–50.
Lau CM, Adams NM, Geary CD, Weizman O-E, Rapp M, Pritykin Y, et al. Epigenetic control of innate and adaptive immune memory. Nat Immunol. 2018;19:963–72.
Article PubMed PubMed Central Google Scholar
Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, et al. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol. 2015;16:1034–43.
Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang S-Y, Oosting M, et al. BCG Vaccination protects against experimental viral infection in humans through the Induction of Cytokines Associated with trained immunity. Cell Host Microbe. 2018;23:89–e1005.
Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086.
Article PubMed PubMed Central Google Scholar
Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684.
Article PubMed PubMed Central Google Scholar
Arts RJW, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, et al. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in trained immunity. Cell Metab. 2016;24:807–19.
Article PubMed PubMed Central Google Scholar
Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden CDCC, Li Y, et al. Metabolic induction of trained immunity through the Mevalonate Pathway. Cell. 2018;172:135–e1469.
Arts RJW, Carvalho A, La Rocca C, Palma C, Rodrigues F, Silvestre R, et al. Immunometabolic pathways in BCG-Induced trained immunity. Cell Rep. 2016;17:2562–71.
Article PubMed PubMed Central Google Scholar
Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de Bree LCJ, Damen MSMA, et al. β-Glucan-Induced trained immunity protects against Leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 2019;28:2659–e26726.
Yun C-H, Estrada A, Van Kessel A, Park B-C, Laarveld B. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003;35:67–75.
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: a new weapon in the fight against infectious diseases. Front Immunol. 2023;14:1147476.
Article PubMed PubMed Central Google Scholar
Grigoriou M, Banos A, Filia A, Pavlidis P, Giannouli S, Karali V, et al. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann Rheum Dis. 2020;79:242–53.
Geng S, Chen K, Yuan R, Peng L, Maitra U, Diao N, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun. 2016;7:13436.
Article PubMed PubMed Central Google Scholar
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.
Article PubMed PubMed Central Google Scholar
McBride MA, Stothers CL, Fensterheim BA, Caja KR, Owen AM, Hernandez A, et al. Bacteria- and fungus-derived PAMPs induce innate immune memory via similar functional, metabolic, and transcriptional adaptations. J Leukoc Biol. 2024;115:358–73.
Jentho E, Weis S. DAMPs and Innate Immune Training. Front Immunol. 2021;12:699563.
Article PubMed PubMed Central Google Scholar
Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther. 2005;314:1079–86.
Di Luzio NR, Williams DL. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect Immun. 1978;20:804–10.
Article PubMed PubMed Central Google Scholar
Phillips NC, Chedid L. Anti-infectious activity of liposomal muramyl dipeptides in immunodeficient CBA/N mice. Infect Immun. 1987;55:1426–30.
Article PubMed PubMed Central Google Scholar
Krahenbuhl JL, Sharma SD, Ferraresi RW, Remington JS. Effects of muramyl dipeptide treatment on resistance to infection with Toxoplasma Gondii in mice. Infect Immun. 1981;31:716–22.
Article PubMed PubMed Central Google Scholar
Wongratanacheewin S, Kespichayawattana W, Intachote P, Pichyangkul S, Sermswan RW, Krieg AM, et al. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun. 2004;72:4494–502.
Article PubMed PubMed Central Google Scholar
Waag DM, McCluskie MJ, Zhang N, Krieg AM. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei. Infect Immun. 2006;74:1944–8.
Article PubMed PubMed Central Google Scholar
Ribes S, Meister T, Ott M, Redlich S, Janova H, Hanisch U-K, et al. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection. J Neuroinflammation. 2014;11:14.
Article PubMed PubMed Central Google Scholar
Muñoz N, Van Maele L, Marqués JM, Rial A, Sirard J-C, Chabalgoity JA. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect Immun. 2010;78:4226–33.
Article PubMed PubMed Central Google Scholar
Zhang B, Chassaing B, Shi Z, Uchiyama R, Zhang Z, Denning TL, et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science. 2014;346:861–5.
Article PubMed PubMed Central Google Scholar
Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12:223–32.
Martín-Cruz L, Angelina A, Baydemir I, Bulut Ö, Subiza JL, Netea MG, et al. Candida albicans V132 induces trained immunity and enhances the responses triggered by the polybacterial vaccine MV140 for genitourinary tract infections. Front Immunol. 2022;13:1066383.
Article PubMed PubMed Central Google Scholar
Heng Y, Zhang X, Borggrewe M, van Weering HRJ, Brummer ML, Nijboer TW, et al. Systemic administration of β-glucan induces immune training in microglia. J Neuroinflammation. 2021;18:57.
Comments (0)