Achbergerová L, Nahálka J (2011) Polyphosphate - an ancient energy source and active metabolic regulator. Microb Cell Fact 10:63. https://doi.org/10.1186/1475-2859-10-63
Article CAS PubMed PubMed Central Google Scholar
Agaphonov MO, Trushkina PM, Sohn JH, Choi ES, Rhee SK, Ter-Avanesyan MD (1999) Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast 15(7):541–551. https://doi.org/10.1002/(SICI)1097-0061(199905)
Article CAS PubMed Google Scholar
Albi T, Serrano A (2016) Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 32(2). https://doi.org/10.1007/s11274-015-1983-2
Andreeva N, Ryazanova L, Zvonarev A, Trilisenko L, Kulakovskaya T, Eldarov M (2018) Inorganic polyphosphate in methylotrophic yeasts. Apply Microbiol Biotechnol 102:5235–5244. https://doi.org/10.1007/s00253-018-9008-3
Andreeva N, Ledova L, Ryazanova L, Tomashevsky A, Kulakovskaya T, Eldarov M (2019) Ppn2 endopolyphosphatase overexpressed in Saccharomyces cerevisiae: Comparison with Ppn1, Ppx1, and Ddp1 polyphosphatases. Biochimie 163:101–107. https://doi.org/10.1016/j.biochi.2019.06.001
Article CAS PubMed Google Scholar
Auesukaree C, Homma T, Kaneko Y, Harashima S (2003) Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem Biophys Res Commun 306(4):843–850. https://doi.org/10.1016/s0006-291x(03)01068-4
Article CAS PubMed Google Scholar
Azevedo C, Saiardi A (2017) Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective. Trends Biochem Sci 42(3):219–231. https://doi.org/10.1016/j.tibs.2016.10.008
Article CAS PubMed Google Scholar
Bond C (2007). Freeze-drying of yeast cultures. In: Day JG, Stacey GN (eds) Cryopreservation and Freeze-Drying Protocols. Meth Mol Biol 368: 368:99–107, Humana Press. https://doi.org/10.1007/978-1-59745-362-2_6
Choi J, Rajagopa A, Xu YF, Rabinowitz JD, O’Shea EK (2017) A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS ONE 12(5):e0176085. https://doi.org/10.1371/journal.pone.0176085]
Article CAS PubMed PubMed Central Google Scholar
Eskes E, Deprez MA, Wilms T, Winderickx J (2018) pH homeostasis in yeast; the phosphate perspective. Curr Genet 64(1):155–161. https://doi.org/10.1007/s00294-017-0743-2]
Article CAS PubMed Google Scholar
Farofonova V, Andreeva N, Kulakovskaya E, Karginov A, Agaphonov M, Kulakovskaya T (2023) Multiple effects of the PHO91 gene knockout in Ogataea parapolymorpha. Folia Microbiol (Praha) 68(4):587–593. https://doi.org/10.1007/s12223-023-01039-x]
Article CAS PubMed Google Scholar
Ghillebert R, Swinnen E, De Snijder P, Smets B, Winderickx J (2011) Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 434(2):243–251. https://doi.org/10.1042/BJ20101118]
Article CAS PubMed Google Scholar
Gruzman MB, Titorenko VI, Ashin VV, Lusta KA, Trotsenko YA (1996) Multiple molecular forms of alcohol oxidase from the methylotrophic yeast Pichia methanolica. Biochemistry (Moscow) 61 (12): 1537–1544.
Gupta R, Laxman S (2021) Cycles, sources, and sinks: conceptualizing how phosphate balance modulates carbon flux using yeast metabolic networks. Elife 10:e63341. https://doi.org/10.7554/eLife.63341
Article CAS PubMed PubMed Central Google Scholar
Hürlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18 (11): 4438–4445. https://doi.org/10.1091/mbc.e07-05-0457
Karginov AV, Fokina AV, Kang HA, Kalebina TS, Sabirzyanova TA, Ter-Avanesyan MD, Agaphonov MO (2018) Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation. Sci Rep 8:16428. https://doi.org/10.1038/s41598-018-34888-5>
Article CAS PubMed PubMed Central Google Scholar
Karginov AV, Alexandrov AI, Kushnirov VV, Agaphonov MO (2021) Perturbations in the heme and siroheme biosynthesis pathways causing accumulation of fluorescent free base porphyrins and auxotrophy in Ogataea yeasts. J Fungi (Basel) 7(10):884. https://doi.org/10.3390/jof7100884
Article CAS PubMed Google Scholar
Mani S, Nachiappan V (2022) Lack of low-affinity phosphate transporter pho91 alters lipid metabolism in yeast Saccharomyces cerevisiae. Indian J Sci Technol 15, Issue(43) : 2282–2289. https://doi.org/10.17485/IJST/v15i43.1264
Mouillon JM, Persson BL (2006) New aspects on phosphate sensing and signaling in Saccharomyces cerevisiae. FEMS Yeast Res 6(2):171–176. https://doi.org/10.1111/j.1567-1364.2006.00036.x
Article CAS PubMed Google Scholar
Nicolay K, Veenhuis M, Douma AC, Harder W (1987) A 31P NMR study of the internal pH of yeast peroxisomes. Arch Microbiol 147(1):37–41. https://doi.org/10.1007/BF00492902
Article CAS PubMed Google Scholar
Pinson B, Merle M, Franconi JM, Daignan-Fornier B (2004) Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae. J Biol Chem 279(34):35273–35280. https://doi.org/10.1074/jbc.M405398200
Article CAS PubMed Google Scholar
Potapenko E, Cordeiro CD, Huang G, Storey M, Wittwer C, Dutta AK, Jessen HJ, Starai VJ, Docampo R (2018) 5-Diphosphoinositol pentakisphosphate (5-IP7) regulates phosphate release from acidocalcisomes and yeast vacuoles. J Biol Chem 293(49):19101–19112. https://doi.org/10.1074/jbc.RA118.005884
Article CAS PubMed PubMed Central Google Scholar
Preston RA, Murphy RF, Jones EW (1989) Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A 86(18):7027–7031. https://doi.org/10.1073/pnas.86.18.7027
Article CAS PubMed PubMed Central Google Scholar
Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78(1):605–647. https://doi.org/10.1146/annurev.biochem.77.083007.093039
Rubin GM (1973) The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem 11:3860–3875
Rumjantsev AM, Bondareva OV, Padkina MV, Sambuk EV (2014) Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris. Sci World J 2014:743615. https://doi.org/10.1155/20h14/743615
Sulter GJ, Harder W, Veenhuis M (1993) Structural and functional aspects of peroxisomal membranes in yeasts. FEMS Microbiol Rev 11(4):285–296. https://doi.org/10.1111/j.1574-6976.1993.tb00002.x
Van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763(12):1453–1462. https://doi.org/10.1016/j.bbamcr.2006.07.016
Article CAS PubMed Google Scholar
Waterham HR, Keizer-Gunnink I, Goodman JM, Harder W, Veenhuis M (1990) Immunocytochemical evidence for the acidic nature of peroxisomes in methylotrophic yeasts. FEBS Lett 262(1):17–19. https://doi.org/10.1016/0014-5793(90)80142-6
Article CAS PubMed Google Scholar
Yurimoto Y, Yasuyoshi Sakai Y, Kato N (2002) Chapter 5. Methanol Metabolism. In: Gellissen, G. (Eds.) Hansenula polymorpha: Biology and Applications. Wiley‐VCH, Verlag GmbH https://doi.org/10.1002/3527602356.ch5
Zhou Y, Yuikawa N, Nakatsuka H, Maekawa H, Harashima S, Nakanishi Y, Kaneko Y (2016) Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha. Curr Genet 62(3):595–605. https://doi.org/10.1007/s00294-016-0565-7
Comments (0)