Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources

Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff 20:30–42

Article  CAS  Google Scholar 

Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imag 35(5):1038–1054

Article  Google Scholar 

Runge VM, Heverhagen JT (2020) Advocating the development of next-generation, advanced-design low-field magnetic resonance systems. Invest Radiol 55(12):747–753

Article  PubMed  Google Scholar 

Sarracanie M, Salameh N (2020) Low-field MRI: how low can we go? A fresh view on an old debate. Front Phys 8:172

Article  Google Scholar 

Hori M, Hagiwara A, Goto M, Wada A, Aoki S (2021) Low-field magnetic resonance imaging: its history and renaissance. Invest Radiol 56(11):669

Article  PubMed  PubMed Central  Google Scholar 

Webb A, Obungoloch JJN (2023) Five steps to make MRI scanners more affordable to the world. Nature 615(7952):391–393

Article  CAS  PubMed  Google Scholar 

Hennig J (2023) An evolution of low-field strength MRI. Magn Reson Mater Phy 36:335–346

Article  Google Scholar 

Koonjoo N, Zhu B, Bagnall GC, Bhutto D, Rosen MS (2021) Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci Rep 11(1):8248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, He W, He Y, Wu J, Shen S, Xu Z (2022) Active EMI suppression system for a 50 mT unshielded portable MRI scanner. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2022.3170450

Article  PubMed  PubMed Central  Google Scholar 

Webb A, O’Reilly T (2023) Tackling SNR at low-field: a review of hardware approaches for point-of-care systems. Magn Reson Mater Phy 36:375–393

Article  Google Scholar 

O’Reilly T, Teeuwisse WM, de Gans D, Koolstra K, Webb AG (2020) In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magn Reson Med 85(1):495–505

Article  PubMed  PubMed Central  Google Scholar 

Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, Sliwiak M, Sappo CR, Vaughn CF, Guerin B, Rosen MS, Lev MH, Wald LL (2021) A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5(3):229–239

Article  CAS  PubMed  Google Scholar 

Guallart-Naval T, Algarín JM, Pellicer-Guridi R, Galve F, Vives-Gilabert Y, Bosch R, Pallás E, González JM, Rigla JP, Martínez P (2022) Portable magnetic resonance imaging of patients indoors, outdoors and at home. Sci Rep 12(1):1–11

Article  Google Scholar 

Larsen JJ, Dalgaard E, Auken E (2014) Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering. Geophys J Int 196(2):828–836

Article  Google Scholar 

Huang X, Dong H, Qiu Y, Li B, Tao Q, Zhang Y, Krause HJ, Offenhausser A, Xie X (2018) Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment. J Magn Reson 286:52–59

Article  CAS  PubMed  Google Scholar 

Srinivas SA, Cauley SF, Stockmann JP, Sappo CR, Vaughn CE, Wald LL, Grissom WA, Cooley CZ (2021) External dynamic interference estimation and removal (EDITER) for low field MRI. Magn Reson Med 87(2):614–628

Article  PubMed  PubMed Central  Google Scholar 

Parsa J, O’Reilly T, Webb A (2023) A single-coil-based method for electromagnetic interference reduction in point-of-care low field MRI systems. J Magn Reson 346:107355

Article  CAS  PubMed  Google Scholar 

Srinivas SA, Cooley CZ, Stockmann JP, McDaniel PC, Wald LL (2020) Retrospective electromagnetic interference mitigation in a portable low field MRI system. In: Proc 28th Annu Meet ISMRM Syd

Shen FX, Wolf SM, Bhavnani S, Deoni S, Elison JT, Fair D, Garwood M, Gee MS, Geethanath S, Kay K, Lim KO, Lockwood Estrin G, Luciana M, Peloquin D, Rommelfanger K, Schiess N, Siddiqui K, Torres E, Vaughan JT (2021) Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. Neuroimage 238:118210

Article  PubMed  Google Scholar 

Sien ME, Robinson AL, Hu HH, Nitkin CR, Hall AS, Files MG, Artz NS, Pitts JT, Chan SS (2023) Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2022-324200

Article  PubMed  Google Scholar 

Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, Lau GKK, Leung GKK, Wu EX (2021) A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12(1):7238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Xiao L, Liu Y, Leong AT, Wu EX (2023) Electromagnetic interference (EMI) elimination via active sensing and deep learning prediction for RF shielding-free MRI. NMR Biomed. https://doi.org/10.1002/nbm.4956:e4956

Article  PubMed  Google Scholar 

Zhao Y, Xiao L, Hu J, Wu EX (2024) Robust EMI elimination for RF shielding-free MRI through deep learning direct MR signal prediction. Magn Reson Med. https://doi.org/10.1002/mrm.30046

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Ding Y, Lau V, Man C, Su S, Xiao L, Leong ATL, Wu EX (2024) Whole-body magnetic resonance imaging at 0.05 Tesla. Science 384(6696):eadm7168

Article  CAS  PubMed  Google Scholar 

Li L, Liu Y, Meng X, Zhao Y, Wei S, Wang H, Wang Z, Wei Z, Yang W (2024) Activating high-frequency information nodes for super-resolution magnetic resonance imaging. Biomed Signal Proces 93:106154

Article  Google Scholar 

Liang J, Cao J, Sun G, Zhang K, Gool LV, Timofte R (2021) SwinIR: image restoration using swin transformer. In: Proc IEEE/CVF int conf comput vis. IEEE, p 1833–1844

Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, Dong C (2023) Activating more pixels in image super-resolution transformer. In: Proc IEEE/CVF conf comput vis pattern recognit, p 22367–22377

Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2022) Swin-unet: Unet-like pure transformer for medical image segmentation. In: Proc eur conf comput vis. Springer, p 205-218

Wei S, Wei Z, Wang Z, Wang H, He Q, He H, Li L, Yang W (2023) Optimization design of a permanent magnet used for a low field (0.2 T) movable MRI system. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-023-01090-2

Article  Google Scholar 

Arnold TC, Freeman CW, Litt B, Stein JM (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imag 57(1):25–44

Article  Google Scholar 

Sheth KN, Mazurek MH, Yuen MM, Cahn BA, Shah JT, Ward A, Kim JA, Gilmore EJ, Falcone GJ, Petersen N, Gobeske KT, Kaddouh F, Hwang DY, Schindler J, Sansing L, Matouk C, Rothberg J, Sze G, Siner J, Rosen MS, Spudich S, Kimberly WT (2020) Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol 78(1):41–47

Article  PubMed  PubMed Central  Google Scholar 

Deoni SCL, Bruchhage MMK, Beauchemin J, Volpe A, D’Sa V, Huentelman M, Williams SCR (2021) Accessible pediatric neuroimaging using a low field strength MRI scanner. Neuroimage 238:118273

Article  PubMed  Google Scholar 

Kuoy E, Glavis-Bloom J, Hovis G, Yep B, Biswas A, Masudathaya L-A, Norrick LA, Limfueco J, Soun JE, Chang PD (2022) Point-of-care brain MRI: preliminary results from a single-center retrospective study. Radiol Artif Intell 305(3):666–671

Google Scholar 

Mazurek MH, Cahn BA, Yuen MM, Prabhat AM, Chavva IR, Shah JT, Crawford AL, Welch EB, Rothberg J, Sacolick L (2021) Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat Commun 12(1):5119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salameh N, Lurie DJ, Ipek Ö, Cooley CZ, Campbell-Washburn AE (2023) Exploring the foothills: benefits below 1 Tesla? Magn Reson Mater Phy 36(3):329–333

Article  Google Scholar 

Comments (0)

No login
gif