Computational screening of biomarkers and potential drugs for arthrofibrosis based on combination of sequencing and large nature language model

Journal of Orthopaedic TranslationVolume 44, January 2024, Pages 102-113Journal of Orthopaedic TranslationAuthor links open overlay panel, , , , AbstractBackground

Arthrofibrosis (AF) is a fibrotic joint disease resulting from excessive collagen production and fibrous scar formation after total knee arthroplasty (TKA). This devastating complication may cause consistent pain and dramatically reduction of functionality. Unfortunately, the conservative treatments to prevent the AF in the early stage are largely unknown due to the lack of specific biomarkers and reliable therapeutic targets.

Methods

In this study, we extracted1782 fibrosis related genes (FRGs) from 373,461published literature based on the large natural language processing models (ChatGPT) and intersected with the 2750 differential expressed genes (DEGs) from mRNA microarray (GSE135854). A total of 311 potential AF biomarker genes (PABGs) were obtained and functional analysis were performed including gene ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Subsequently, we accomplished validation in AF animal models with immobilization of the unilateral knee joints of 16 rabbits for 1-week, 2-weeks, 3-weeks and 4-weeks. Finally, we tested the biomarkers in a retrospective cohort enrolled 35 AF patients and 35 control group patients.

Results

We identified G-protein-coupled receptor 17 (GPR17) as a reliable therapeutic biomarker for AF diagnosis with higher AUC (0.819) in the ROC curve. A total of 21 potential drugs targeted to GPR17 were screened. Among them, pranlukast and montelukast have achieved therapeutic effect in animal models. In addition, we established an online AF database for data integration (https://chenxi2023.shinyapps.io/afdbv1).

Conclusions

These results unveiling therapeutic biomarkers for AF diagnosis, and provide potential drugs for clinical treatment.

The translational potential of this article

Our study demonstrated that GPR17 holds significant promise as a potential biomarker and therapeutic target for arthrofibrosis. Moreover, pranlukast and montelukast targeted to GPR17 that could be instrumental in the treatment of AF.

Keywords

AF

biomarker

GPR17

macrophage

Stiff knee

© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Speaking Orthopaedic Society.

Comments (0)

No login
gif