World Health Organization. Dementia. 2021. https://www.who.int/en/news-room/fact-sheets/detail/dementia. Accessed 3 Mar 2023.
NIH. What is dementia? Symptoms, types, and diagnosis. 2022. https://www.nia.nih.gov/health/what-is-dementia. Accessed 3 Mar 2023.
U.S Department of Health and Human Services (HHS). What is dementia? 2022. https://www.alzheimers.gov/alzheimers-dementias/what-is-dementia. Accessed 3 Mar 2023.
Tăuţan A-M, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: a review of available tools with a focus on machine learning techniques. Artif Intell Med. 2021;117:102081. https://doi.org/10.1016/j.artmed.2021.102081.
Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: a scoping review on current capabilities and future directions. J Biomed Inform. 2022;127:104030. https://doi.org/10.1016/j.jbi.2022.104030.
Battineni G, Chintalapudi N, Hossain MA, Losco G, Ruocco C, Sagaro GG, Traini E, Nittari G, Amenta F. Artificial intelligence models in the diagnosis of adult-onset dementia disorders: a review. Bioengineering. 2022;9(8):370. https://doi.org/10.3390/bioengineering9080370.
Article PubMed PubMed Central Google Scholar
Saravanan S, Ramkumar K, Adalarasu K, Sivanandam V, Kumar SR, Stalin S, Amirtharajan R. A systematic review of artificial intelligence (AI) based approaches for the diagnosis of Parkinson’s disease. Arch Comput Meth Eng. 2022;29(6):3639–53. https://doi.org/10.1007/s11831-022-09710-1.
Goyal P, Rani R, Singh K. State-of-the-art machine learning techniques for diagnosis of Alzheimer’s disease from MR-images: a systematic review. Arch Comput Meth Eng. 2021;29(5):2737–80. https://doi.org/10.1007/s11831-021-09674-8.
Billeci L, Badolato A, Bachi L, Tonacci A. Machine learning for the classification of Alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. Processes. 2020;8(9):1071. https://doi.org/10.3390/pr8091071.
Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, Soar J, Palmer EE, Acharya UR. Application of deep learning models for automated identification of Parkinson’s disease: a review (2011–2021). Sensors. 2021;21(21):7034. https://doi.org/10.3390/s21217034.
Article ADS CAS PubMed PubMed Central Google Scholar
Fathi S, Ahmadi M, Dehnad A. Early diagnosis of Alzheimer’s disease based on deep learning: a systematic review. Comput Biol Med. 2022;146:105634. https://doi.org/10.1016/j.compbiomed.2022.105634.
Pereira CR, Pereira DR, Weber SA, Hook C, de Albuquerque VHC, Papa JP. A survey on computer-assisted Parkinson’s disease diagnosis. Artif Intell Med. 2019;95:48–63. https://doi.org/10.1016/j.artmed.2018.08.007.
Khan P, Kader MF, Islam SMR, Rahman AB, Kamal MS, Toha MU, Kwak K-S. Machine learning and deep learning approaches for brain disease diagnosis: principles and recent advances. IEEE Access. 2021;9:37622–55. https://doi.org/10.1109/access.2021.3062484.
Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng. 2019;12:19–33. https://doi.org/10.1109/rbme.2018.2886237.
Agarwal D, Marques G, de la Torre-Díez I, Martin MAF, Zapiraín BG, Rodríguez FM. Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors. 2021;21(21):7259. https://doi.org/10.3390/s21217259.
Article ADS CAS PubMed PubMed Central Google Scholar
Blanco K, Salcidua S, Orellana P, Sauma-Pérez T, León T, Steinmetz LCL, Ibañez A, Duran-Aniotz C, de la Cruz R. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1). https://doi.org/10.1186/s13195-023-01304-8.
Zhao Z, Chuah JH, Lai KW, Chow C-O, Gochoo M, Dhanalakshmi S, Wang N, Bao W, Wu X. Conventional machine learning and deep learning in Alzheimer’s disease diagnosis using neuroimaging: a review. Front Comput Neurosci. 2023;17. https://doi.org/10.3389/fncom.2023.1038636.
Viswan V, Shaffi N, Mahmud M, Subramanian K, Hajamohideen F. Explainable artificial intelligence in Alzheimer’s disease classification: a systematic review. Cogn Comput. 2023. https://doi.org/10.1007/s12559-023-10192-x.
Aggarwal N, Saini BS, Gupta S. Role of artificial intelligence techniques and neuroimaging modalities in detection of Parkinson’s disease: a systematic review. Cogn Comput. 2023. https://doi.org/10.1007/s12559-023-10175-y.
Arya AD, Verma SS, Chakarabarti P, Chakrabarti T, Elngar AA, Kamali A-M, Nami M. A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer’s disease. Brain Inform. 2023;10(1). https://doi.org/10.1186/s40708-023-00195-7.
Huang G, Li R, Bai Q, Alty J. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review. Health Inf Sci Syst. 2023;11(1). https://doi.org/10.1007/s13755-023-00231-0.
Muhammed Niyas K, Thiyagarajan P. A systematic review on early prediction of mild cognitive impairment to Alzheimer’s using machine learning algorithms. Int J Intell Netw. 2023;4:74–88. https://doi.org/10.1016/j.ijin.2023.03.004.
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the lancet commission. The Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/s0140-6736(20)30367-6.
van de Vorst IE, Koek HL, de Vries R, Bots ML, Reitsma JB, Vaartjes I. Effect of vascular risk factors and diseases on mortality in individuals with dementia: a systematic review and meta-analysis. J Am Geriatr Soc. 2015;64(1):37–46. https://doi.org/10.1111/jgs.13835.
Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426–43. https://doi.org/10.1111/j.1467-789x.2010.00825.x.
Article CAS PubMed Google Scholar
Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367–78. https://doi.org/10.1093/aje/kwm116.
Gardener H, Wright CB, Rundek T, Sacco RL. Brain health and shared risk factors for dementia and stroke. Nat Rev Neurol. 2015;11(11):651–7. https://doi.org/10.1038/nrneurol.2015.195.
Article CAS PubMed Google Scholar
Morris JC. The clinical dementia rating (CDR). Neurology. 1993;43(11):2412.2-2412-a. https://doi.org/10.1212/wnl.43.11.2412-a.
Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article CAS PubMed Google Scholar
Cullen B, O’Neill B, Evans JJ, Coen RF, Lawlor BA. A review of screening tests for cognitive impairment. J Neurol Neurosurg Psychiatry. 2007;78(8):790–9. https://doi.org/10.1136/jnnp.2006.095414.
Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s disease assessment scale-cognitive subscale (ADAS-COG): Modifications and responsiveness in pre-dementia populations. A narrative review. J Alzheimers Dis. 2018;63(2):423–44. https://doi.org/10.3233/JAD-170991.
Article PubMed PubMed Central Google Scholar
King JH, Gfeller JD, Davis HP. Detecting simulated memory impairment with the Rey auditory verbal learning test: implications of base rates and study generalizability. J Clin Exp Neuropsychol. 1998;20(5):603–12. https://doi.org/10.1076/jcen.20.5.603.1124.
Article CAS PubMed Google Scholar
Brañez-Condorena A, Soriano-Moreno DR, Navarro-Flores A, Solis-Chimoy B, Diaz-Barrera ME, Taype-Rondan A. Accuracy of the geriatric depression scale (GDS)-4 and GDS-5 for the screening of depression among older adults: a systematic review and meta-analysis. PLoS ONE. 2021;16(7):e0253899. https://doi.org/10.1371/journal.pone.0253899.
Article CAS PubMed PubMed Central Google Scholar
González DA, Gonzales MM, Resch ZJ, Sullivan AC, Soble JR. Comprehensive evaluation of the functional activities questionnaire (FAQ) and its reliability and validity. Assessment. 2021;29(4):748–63. https://doi.org/10.1177/1073191121991215.
Article PubMed PubMed Central Google Scholar
Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, Lopez OL, DeKosky ST. Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J Neuropsychiatry Clin Neurosci. 2000;12(2):233–9. https://doi.org/10.1176/jnp.12.2.233.
Article CAS PubMed Google Scholar
NHS. Symptoms of dementia. 2022. https://www.nhs.uk/conditions/dementia/symptoms/. Accessed 3 Mar 2023.
Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56(9):484–546. https://doi.org/10.1016/j.disamonth.2010.06.001.
Article PubMed PubMed Central Google Scholar
O’Brien JT, Thomas A. Vascular dementia. The Lancet. 2015;386(10004):1698–706. https://doi.org/10.1016/s0140-6736(15)00463-8.
Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. The Lancet. 2015;386(10004):1683–97. https://doi.org/10.1016/s0140-6736(15)00462-6.
Parkinson’s Foundation. Parkinson’s disease vs. Parkinsonism. 2022. https://www.parkinson.org/library/fact-sheets/parkinsonism. Accessed 3 Mar 2023.
Bang J, Spina S, Miller BL. Frontotemporal dementia. The Lancet. 2015;386(10004):1672–82. https://doi.org/10.1016/s0140-6736(15)00461-4.
Walker FO. Huntington’s disease. The Lancet. 2007;369(9557):218–28. https://doi.org/10.1016/s0140-6736(07)60111-1.
Comments (0)