SPAG6 regulates cell proliferation and apoptosis via TGF-β/Smad signal pathway in adult B-cell acute lymphoblastic leukemia

Cortés-López M, Schulz L, Enculescu M, Paret C, Spiekermann B, Quesnel-Vallières M, et al. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat Commun. 2022;13(1):5570. https://doi.org/10.1038/s41467-022-31818-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28. https://doi.org/10.1002/cncr.29383.

Article  PubMed  Google Scholar 

Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet (London, England). 2020;395(10230):1146–62. https://doi.org/10.1016/s0140-6736(19)33018-1.

Article  CAS  PubMed  Google Scholar 

Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7. https://doi.org/10.1182/blood-2005-04-1623.

Article  CAS  PubMed  Google Scholar 

Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood. 2009;113(7):1408–11. https://doi.org/10.1182/blood-2008-06-164863.

Article  CAS  PubMed  Google Scholar 

Patel B, Dey A, Castleton AZ, Schwab C, Samuel E, Sivakumaran J, et al. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology. Blood. 2014;124(1):96–105. https://doi.org/10.1182/blood-2014-01-549352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol: off J Am Soc Clin Oncol. 2011;29(5):532–43. https://doi.org/10.1200/jco.2010.30.1382.

Article  Google Scholar 

Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25. https://doi.org/10.1038/nrc1669.

Article  CAS  PubMed  Google Scholar 

Siliņa K, Zayakin P, Kalniņa Z, Ivanova L, Meistere I, Endzeliņš E, et al. Sperm-associated antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in cancer patients. J Immunother (Hagerstown, Md: 1997). 2011;34(1):28–44. https://doi.org/10.1097/CJI.0b013e3181fb64fa.

Article  CAS  Google Scholar 

Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2009;15(17):5323–37. https://doi.org/10.1158/1078-0432.Ccr-09-0737.

Article  Google Scholar 

Jäger E, Jäger D, Knuth A. Antigen-specific immunotherapy and cancer vaccines. Int J Cancer. 2003;106(6):817–20. https://doi.org/10.1002/ijc.11292.

Article  CAS  PubMed  Google Scholar 

Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2006;12(8):2434–41. https://doi.org/10.1158/1078-0432.Ccr-05-2552.

Article  CAS  Google Scholar 

Coan M, Rampioni Vinciguerra GL, Cesaratto L, Gardenal E, Bianchet R, Dassi E, et al. Exploring the Role of Fallopian Ciliated Cells in the Pathogenesis of High-Grade Serous Ovarian Cancer. Int Journal of Molecular Sciences. 2018. https://doi.org/10.3390/ijms19092512.

Article  PubMed  Google Scholar 

Ding L, Luo J, Zhang JP, Wang J, Li ZQ, Huang J, et al. Aberrant expression of SPAG6 may affect the disease phenotype and serve as a tumor biomarker in BCR/ABL1-negative myeloproliferative neoplasms. Oncol Lett. 2022;23(1):10. https://doi.org/10.3892/ol.2021.13128.

Article  CAS  PubMed  Google Scholar 

Zhang R, Zhu H, Yuan Y, Wang Y, Tian Z. SPAG6 promotes cell proliferation and inhibits apoptosis through the PTEN/PI3K/AKT pathway in Burkitt lymphoma. Oncol Rep. 2020;44(5):2021–30. https://doi.org/10.3892/or.2020.7776.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Yang B, Wang L, Chen L, Luo X, Liu L. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes. Oncol Rep. 2017;37(5):2839–46. https://doi.org/10.3892/or.2017.5540.

Article  CAS  PubMed  Google Scholar 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu J, Yuan P, Luo J, Chen Y, Tian Y, Ding L, et al. Upregulated SPAG6 promotes acute myeloid leukemia progression through MYO1D that regulates the EGFR family expression. Blood Adv. 2022;6(18):5379–94. https://doi.org/10.1182/bloodadvances.2021006920.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang M, Chen Y, Deng L, Luo X, Wang L, Liu L. Upregulation of SPAG6 in myelodysplastic syndrome: knockdown inhibits cell proliferation via AKT/FOXO signaling pathway. DNA Cell Biol. 2019;38(5):476–84. https://doi.org/10.1089/dna.2018.4521.

Article  CAS  PubMed  Google Scholar 

Yin J, Li X, Zhang Z, Luo X, Wang L, Liu L. SPAG6 silencing induces apoptosis in the myelodysplastic syndrome cell line SKM-1 via the PTEN/PI3K/AKT signaling pathway in vitro and in vivo. Int J Oncol. 2018;53(1):297–306. https://doi.org/10.3892/ijo.2018.4390.

Article  CAS  PubMed  Google Scholar 

Zhang M, Luo J, Luo X, Liu L. SPAG6 silencing induces autophagic cell death in SKM-1 cells via the AMPK/mTOR/ULK1 signaling pathway. Oncol Lett. 2020;20(1):551–60. https://doi.org/10.3892/ol.2020.11607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21. https://doi.org/10.1038/nrc1208.

Article  CAS  PubMed  Google Scholar 

Lin HK, Bergmann S. Pandolfi pp Deregulated TGF-beta signaling in leukemogenesis. Oncogene. 2005;24(37):5693–700. https://doi.org/10.1038/sj.onc.1208923.

Article  CAS  PubMed  Google Scholar 

Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies. Blood. 2006;107(12):4589–96. https://doi.org/10.1182/blood-2005-10-4169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31. https://doi.org/10.1016/j.pharmthera.2014.11.001.

Article  CAS  PubMed  Google Scholar 

Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J oncol. 2015;2015: 587193. https://doi.org/10.1155/2015/587193.

Article  PubMed Central  Google Scholar 

Hematology Oncology Committee, Chinese Anti-Cancer Association; Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese Medical Association. [Chinese guidelines for diagnosis and treatment of acute lymphoblastic leukemia (2016)]. Zhonghua xue ye xue za zhiZhonghua xueyexue zazhi. 2016;37(10):837–45. doi:https://doi.org/10.3760/cma.j.issn.0253-2727.2016.10.002

Brown PA, Shah B, Fathi A, Wieduwilt M, Advani A, Aoun P, et al. NCCN guidelines insights: acute lymphoblastic leukemia, version 1.2017. J Nat Compr Cancer Network: JNCCN. 2017;15(9):1091–102. https://doi.org/10.6004/jnccn.2017.0147.

Article  CAS  Google Scholar 

Steinbach D, Bader P, Willasch A, Bartholomae S, Debatin KM, Zimmermann M, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(6):1353–9. https://doi.org/10.1158/1078-0432.Ccr-14-1999.

Article  CAS  Google Scholar 

Mulaw MA, Krause A, Deshpande AJ, Krause LF, Rouhi A, La Starza R, et al. CALM/AF10-positive leukemias show upregulation of genes involved in chromatin assembly and DNA repair processes and of genes adjacent to the breakpoint at 10p12. Leukemia. 2012;26(5):1012–9. https://doi.org/10.1038/leu.2011.307.

Article  CAS  PubMed  Google Scholar 

Skou AS, Juul-Dam KL, Hansen M, Lausen B, Stratmann S, Holmfeldt L, et al. Measurable residual disease monitoring of SPAG6, ST18, PRAME, and XAGE1A expression in peripheral blood may detect imminent relapse in childhood acute myeloid leukemia. J Mol Diagn: JMD. 2021;23(12):1787–99. https://doi.org/10.1016/j.jmoldx.2021.09.004.

Article  CAS  PubMed  Google Scholar 

Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52. https://doi.org/10.1056/NEJMra1400972.

Article  CAS  PubMed  Google Scholar 

Yang B, Wang L, Luo X, Chen L, Yang Z, Liu L. SPAG6 silencing inhibits the growth of the malignant myeloid cell lines SKM-1 and K562 via activating p53 and caspase activation-dependent apoptosis. Int J Oncol. 2015;46(2):649–56. https://doi.org/10.3892/ijo.2014.2768.

Article  CAS  PubMed  Google Scholar 

Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of can

Comments (0)

No login
gif