Cortés-López M, Schulz L, Enculescu M, Paret C, Spiekermann B, Quesnel-Vallières M, et al. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat Commun. 2022;13(1):5570. https://doi.org/10.1038/s41467-022-31818-y.
Article CAS PubMed PubMed Central Google Scholar
Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28. https://doi.org/10.1002/cncr.29383.
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet (London, England). 2020;395(10230):1146–62. https://doi.org/10.1016/s0140-6736(19)33018-1.
Article CAS PubMed Google Scholar
Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7. https://doi.org/10.1182/blood-2005-04-1623.
Article CAS PubMed Google Scholar
Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood. 2009;113(7):1408–11. https://doi.org/10.1182/blood-2008-06-164863.
Article CAS PubMed Google Scholar
Patel B, Dey A, Castleton AZ, Schwab C, Samuel E, Sivakumaran J, et al. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology. Blood. 2014;124(1):96–105. https://doi.org/10.1182/blood-2014-01-549352.
Article CAS PubMed PubMed Central Google Scholar
Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol: off J Am Soc Clin Oncol. 2011;29(5):532–43. https://doi.org/10.1200/jco.2010.30.1382.
Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25. https://doi.org/10.1038/nrc1669.
Article CAS PubMed Google Scholar
Siliņa K, Zayakin P, Kalniņa Z, Ivanova L, Meistere I, Endzeliņš E, et al. Sperm-associated antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in cancer patients. J Immunother (Hagerstown, Md: 1997). 2011;34(1):28–44. https://doi.org/10.1097/CJI.0b013e3181fb64fa.
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2009;15(17):5323–37. https://doi.org/10.1158/1078-0432.Ccr-09-0737.
Jäger E, Jäger D, Knuth A. Antigen-specific immunotherapy and cancer vaccines. Int J Cancer. 2003;106(6):817–20. https://doi.org/10.1002/ijc.11292.
Article CAS PubMed Google Scholar
Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2006;12(8):2434–41. https://doi.org/10.1158/1078-0432.Ccr-05-2552.
Coan M, Rampioni Vinciguerra GL, Cesaratto L, Gardenal E, Bianchet R, Dassi E, et al. Exploring the Role of Fallopian Ciliated Cells in the Pathogenesis of High-Grade Serous Ovarian Cancer. Int Journal of Molecular Sciences. 2018. https://doi.org/10.3390/ijms19092512.
Ding L, Luo J, Zhang JP, Wang J, Li ZQ, Huang J, et al. Aberrant expression of SPAG6 may affect the disease phenotype and serve as a tumor biomarker in BCR/ABL1-negative myeloproliferative neoplasms. Oncol Lett. 2022;23(1):10. https://doi.org/10.3892/ol.2021.13128.
Article CAS PubMed Google Scholar
Zhang R, Zhu H, Yuan Y, Wang Y, Tian Z. SPAG6 promotes cell proliferation and inhibits apoptosis through the PTEN/PI3K/AKT pathway in Burkitt lymphoma. Oncol Rep. 2020;44(5):2021–30. https://doi.org/10.3892/or.2020.7776.
Article CAS PubMed PubMed Central Google Scholar
Li X, Yang B, Wang L, Chen L, Luo X, Liu L. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes. Oncol Rep. 2017;37(5):2839–46. https://doi.org/10.3892/or.2017.5540.
Article CAS PubMed Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.
Article CAS PubMed PubMed Central Google Scholar
Mu J, Yuan P, Luo J, Chen Y, Tian Y, Ding L, et al. Upregulated SPAG6 promotes acute myeloid leukemia progression through MYO1D that regulates the EGFR family expression. Blood Adv. 2022;6(18):5379–94. https://doi.org/10.1182/bloodadvances.2021006920.
Article CAS PubMed PubMed Central Google Scholar
Jiang M, Chen Y, Deng L, Luo X, Wang L, Liu L. Upregulation of SPAG6 in myelodysplastic syndrome: knockdown inhibits cell proliferation via AKT/FOXO signaling pathway. DNA Cell Biol. 2019;38(5):476–84. https://doi.org/10.1089/dna.2018.4521.
Article CAS PubMed Google Scholar
Yin J, Li X, Zhang Z, Luo X, Wang L, Liu L. SPAG6 silencing induces apoptosis in the myelodysplastic syndrome cell line SKM-1 via the PTEN/PI3K/AKT signaling pathway in vitro and in vivo. Int J Oncol. 2018;53(1):297–306. https://doi.org/10.3892/ijo.2018.4390.
Article CAS PubMed Google Scholar
Zhang M, Luo J, Luo X, Liu L. SPAG6 silencing induces autophagic cell death in SKM-1 cells via the AMPK/mTOR/ULK1 signaling pathway. Oncol Lett. 2020;20(1):551–60. https://doi.org/10.3892/ol.2020.11607.
Article CAS PubMed PubMed Central Google Scholar
Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21. https://doi.org/10.1038/nrc1208.
Article CAS PubMed Google Scholar
Lin HK, Bergmann S. Pandolfi pp Deregulated TGF-beta signaling in leukemogenesis. Oncogene. 2005;24(37):5693–700. https://doi.org/10.1038/sj.onc.1208923.
Article CAS PubMed Google Scholar
Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies. Blood. 2006;107(12):4589–96. https://doi.org/10.1182/blood-2005-10-4169.
Article CAS PubMed PubMed Central Google Scholar
Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31. https://doi.org/10.1016/j.pharmthera.2014.11.001.
Article CAS PubMed Google Scholar
Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J oncol. 2015;2015: 587193. https://doi.org/10.1155/2015/587193.
Article PubMed Central Google Scholar
Hematology Oncology Committee, Chinese Anti-Cancer Association; Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese Medical Association. [Chinese guidelines for diagnosis and treatment of acute lymphoblastic leukemia (2016)]. Zhonghua xue ye xue za zhiZhonghua xueyexue zazhi. 2016;37(10):837–45. doi:https://doi.org/10.3760/cma.j.issn.0253-2727.2016.10.002
Brown PA, Shah B, Fathi A, Wieduwilt M, Advani A, Aoun P, et al. NCCN guidelines insights: acute lymphoblastic leukemia, version 1.2017. J Nat Compr Cancer Network: JNCCN. 2017;15(9):1091–102. https://doi.org/10.6004/jnccn.2017.0147.
Steinbach D, Bader P, Willasch A, Bartholomae S, Debatin KM, Zimmermann M, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(6):1353–9. https://doi.org/10.1158/1078-0432.Ccr-14-1999.
Mulaw MA, Krause A, Deshpande AJ, Krause LF, Rouhi A, La Starza R, et al. CALM/AF10-positive leukemias show upregulation of genes involved in chromatin assembly and DNA repair processes and of genes adjacent to the breakpoint at 10p12. Leukemia. 2012;26(5):1012–9. https://doi.org/10.1038/leu.2011.307.
Article CAS PubMed Google Scholar
Skou AS, Juul-Dam KL, Hansen M, Lausen B, Stratmann S, Holmfeldt L, et al. Measurable residual disease monitoring of SPAG6, ST18, PRAME, and XAGE1A expression in peripheral blood may detect imminent relapse in childhood acute myeloid leukemia. J Mol Diagn: JMD. 2021;23(12):1787–99. https://doi.org/10.1016/j.jmoldx.2021.09.004.
Article CAS PubMed Google Scholar
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52. https://doi.org/10.1056/NEJMra1400972.
Article CAS PubMed Google Scholar
Yang B, Wang L, Luo X, Chen L, Yang Z, Liu L. SPAG6 silencing inhibits the growth of the malignant myeloid cell lines SKM-1 and K562 via activating p53 and caspase activation-dependent apoptosis. Int J Oncol. 2015;46(2):649–56. https://doi.org/10.3892/ijo.2014.2768.
Article CAS PubMed Google Scholar
Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of can
Comments (0)