Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Wei D. Review of flexible wearable sensor devices for biomedical application. Micromachines. 2022;13(9):1395. https://doi.org/10.3390/mi13091395.
Di Pasquale V, De Simone V, Radano M, Miranda S. Wearable devices for health and safety in production systems: a literature review. IFAC-PapersOnLine. 2022;55(10):341–6. https://doi.org/10.1016/j.ifacol.2022.09.410.
Nasiri S, Khosravani MR. Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors Actuators A Phys. 2020;312:112105. https://doi.org/10.1016/j.sna.2020.112105.
Liu B, Ridder A, Smith V, Thilaganathan B, Bhide A. Feasibility of antenatal ambulatory fetal electrocardiography: a systematic review. J Matern Fetal Neonatal Med. 2023;36(1):2204390. https://doi.org/10.1080/14767058.2023.2204390.
Boulif A, Ananou B, Ouladsine M, Delliaux S. A literature review: ECG-based models for arrhythmia diagnosis using artificial intelligence techniques. Bioinform Biol Insights. 2023;17:11779322221149600. https://doi.org/10.1177/11779322221149600.
dos Santos Silva A, Correia MV, Costa A, da Silva HP. Towards industrially feasible invisible electrocardiography (ECG) in sanitary facilities. In: 2023 IEEE 7th Portuguese meeting on bioengineering (ENBENG); 2023, June. p. 1–4. https://doi.org/10.1109/ENBENG58165.2023.10175356.
Rizqyawan MI, Nuryatno ET, Fakhrurroja H, Munandar A, Wibowo JW, Kusumandari DE, Salim TI. Exploration of ECG-based real-time arrhythmia detection: a systematic literature review. In: 2022 IEEE international conference advancement in data science, E-learning and information systems (ICADEIS); 2022, November. p. 01–8. https://doi.org/10.1109/ICADEIS56544.2022.10037399.
Hysing J, Gibbs C, Holla ØL, Thalamus J, Haugaa KH. Moderately prolonged QTc in computer-assessed ECG, random variation or significant risk factor? A Literature Review. Cardiogenetics. 2022;12(3):261–9. https://doi.org/10.3390/cardiogenetics12030025.
Ismail L, Karwowski W, Hancock PA, Taiar R, Fernandez-Sumano R. Electroencephalography (EEG) physiological indices reflecting human physical performance: a systematic review using updated PRISMA. J Integr Neurosci. 2023;22(3):62. https://doi.org/10.31083/j.jin2203062.
Mesin L, Cipriani GE, Amanzio M. Electroencephalography-Based Brain–Machine Interfaces in Older Adults: A Literature Review. Bioengineering. 2023;10(4):395. https://doi.org/10.3390/bioengineering10040395.
Astuti RD, Suhardi B, Laksono PW, Susanto N, Muguro J. Literature review: impact of noise on cognitive performance using electroencephalography. Appl Mech Mater. 2023;913:131–47. https://doi.org/10.4028/p-052746.
Anders C, Arnrich B. Wearable electroencephalography and multi-modal mental state classification: a systematic literature review. Comput Biol Med. 2022:106088. https://doi.org/10.1016/j.compbiomed.2022.106088.
Farizal A, Wibawa AD, Pamungkas Y, Pratiwi M, Mas A. Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In: 2022 11th IEEE electrical power, electronics, communications, controls and informatics seminar (EECCIS); 2022, August. p. 362–7. https://doi.org/10.1109/EECCIS54468.2022.9902928.
Alix JJ, Plesia M, Shaw PJ, Mead RJ, Day JC. Combining electromyography and Raman spectroscopy: optical EMG. Muscle Nerve. 2023. https://doi.org/10.1002/mus.27937.
Hassan ZU, Bashir N, Iltaf A. Electromyography and speech controlled prototype robotic Car using CNN based classifier for EMG. In: 2022 IEEE international conference on emerging trends in electrical, control, and telecommunication engineering (ETECTE); 2022, December. p. 1–5. https://doi.org/10.1109/ETECTE55893.2022.10007092.
Yuan W, Zou K, Zhao Y, Xi N. Detection of human action intention by electromyography (EMG). In: 2022 IEEE 12th international conference on CYBER Technology in Automation, control, and intelligent systems (CYBER); 2022, July. p. 750–4. https://doi.org/10.1109/CYBER55403.2022.9907225.
Toledo-Peral CL, Vega-Martínez G, Mercado-Gutiérrez JA, Rodríguez-Reyes G, Vera-Hernández A, Leija-Salas L, Gutiérrez-Martínez J. Virtual/augmented reality for rehabilitation applications using electromyography as control/biofeedback: systematic literature review. Electronics. 2022;11(14):2271. https://doi.org/10.3390/electronics11142271.
Wu D, Yang J, Sawan M. Transfer learning on electromyography (EMG) tasks: approaches and beyond. IEEE Transac Neural Syst Rehab Eng. 2023;31. https://doi.org/10.1109/TNSRE.2023.3295453.
Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive review of technological advances, current challenges, and future directions. Electronics. 2023;12(13):2923. https://doi.org/10.3390/electronics12132923.
Lyzwinski LN, Elgendi M, Menon C. The use of Photoplethysmography in the assessment of mental health: scoping review. JMIR Mental Health. 2023;10:e40163. https://doi.org/10.2196/40163.
Sadaghiani SM, Bhadra S. Acquiring Photoplethysmography (PPG) signal without LED. In: 2023 IEEE international instrumentation and measurement technology conference (I2MTC); 2023, May. p. 1–6. https://doi.org/10.1109/I2MTC53148.2023.10175960.
Silverio AA, Suarez CG, Silverio LAA, Dino JY, Duran JB, Catambing GEG. An unobtrusive, wireless and wearable single-site blood pressure monitor based on an armband using electrocardiography (ECG) and reflectance Photoplethysmography (PPG) signal processing. Electronics. 2023;12(7):1538. https://doi.org/10.3390/electronics12071538.
Ebrahimi Z, Gosselin B. Ultra-low power Photoplethysmography (PPG) sensors: a methodological review. IEEE Sensors J. 2023; https://doi.org/10.1109/jsen.2023.3284818.
Ebrahimkhani M, Johnson EM, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A deep learning approach to using wearable Seismocardiography (SCG) for diagnosing aortic valve stenosis and predicting aortic hemodynamics obtained by 4D flow MRI. Ann Biomed Eng. 2023;51(12):2802–11.
Balali P, Rabineau J, Hossein A, Tordeur C, Debeir O, Van De Borne P. Investigating cardiorespiratory interaction using ballistocardiography and seismocardiography—a narrative review. Sensors. 2022;22(23):9565. https://doi.org/10.3390/s22239565.
Ganti VG, Gazi AH, An S, Srivatsa AV, Nevius BN, Nichols CJ, Tandon A. Wearable Seismocardiography-based assessment of stroke volume in congenital heart disease. J Am Heart Assoc. 2022;11(18):e026067. https://doi.org/10.1161/JAHA.122.026067.
Peters C, Rocznik T, Yee SY, Duerichen R, Schnitzbauer VJ. Wearable health device system with normalized seismocardiography signals. U.S. patent application no. 16/975,010. 2021. https://patents.google.com/patent/US20210085216A1/.
Miljković, N., & Šekara, T. B. (2022). A new weighted time window-based method to detect B-point in ICG. https://arxiv.org/abs/2207.04490.
Chabchoub S, Mansouri S, Ben Salah R. Signal processing techniques applied to impedance cardiography ICG signals–a review. J Med Eng Technol. 2022;46(3):243–60. https://doi.org/10.1080/03091902.2022.2026508.
Cosoli G, Spinsante S, Scardulla F, D'Acquisto L, Scalise L. Wireless ECG and cardiac monitoring systems: state of the art, available commercial devices and useful electronic components. Measurement. 2021;177:109243. https://doi.org/10.1016/J.MEASUREMENT.2021.109243.
DeMarzo AP. Clinical use of impedance cardiography for hemodynamic assessment of early cardiovascular disease and management of hypertension. High Blood Pressure Cardiovasc Prevent. 2020;27(3):203–13. https://doi.org/10.1007/S40292-020-00383-0.
Min S, Kim DH, Joe DJ, Kim BW, Jung YH, Lee JH, Lee KJ. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater. 2023:2301627. https://doi.org/10.1002/adma.202301627.
El-Hajj C, Kyriacou PA. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed Signal Process Control. 2020;58:101870. https://doi.org/10.1016/j.bspc.2020.101870.
Wen L, Dong S, Zhang Z, Gu C, Mao J. Noninvasive continuous blood pressure monitoring based on wearable radar sensor with preliminary clinical validation. In: 2022 IEEE/MTT-S international microwave symposium-IMS 2022; 2022, June. p. 707–10. https://doi.org/10.1109/IMS37962.2022.9865440.
Islam SMS, Chow CK, Daryabeygikhotbehsara R, Subedi N, Rawstorn J, Tegegne T, et al. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. Europ Heart J-Digital Health. 2022;3(2):323–37. https://doi.org/10.1093/ehjdh/ztac021.
Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens Bio-Sens Res. 2021;33:100434. https://doi.org/10.1016/J.SBSR.2021.100434.
Athira S, Ardra S, Unnikrishnan A, Pradeep A, Rajeev SP, SD, B. S. Design of Piezoelectric Heart Rate Monitoring Sensor for wearable applications. In: 2022 IEEE 6th international conference on trends in electronics and informatics (ICOEI); 2022, April. p. 1–6. https://doi.org/10.1109/ICOEI53556.2022.9777147.
Hashim UN, Salahuddin L, Ikram RRR, Hashim UR, Ngo HC, Mohayat MHN. The design and implementation of Mobile heart monitoring applications using wearable heart rate sensor. Int J Adv Comput Sci Appl. 2021;12(1) https://doi.org/10.14569/IJACSA.2021.0120120.
Harraghy M, Calderon D, Lietz R, Brady J, Makedon F, Becker E. A review of wearable heart rate sensors in research. In: In proceedings of the 12th ACM international conference on PErvasive technologies related to assistive environments; 2019, June. p. 315–6. https://doi.org/10.1145/3316782.3321550.
Tang X, Yang A, Li L. Optimization of nanofiber wearable heart rate sensor module for human motion detection. Comput Mathematical Methods Med. 2022;2022. https://doi.org/10.1155/2022/1747822.
Shen S, Xiao X, Chen J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun. 2021;57(48):5871–9. https://doi.org/10.1039/D1CC02091A.
Huang N, Bian D, Zhou M, Mehta P, Shah M, Rajput KS, Selvaraj N. Pulse rate guided oxygen saturation monitoring using a wearable armband sensor. In: 2022 44th annual international conference of the IEEE engineering in Medicine & Biology Society (EMBC); 2022, July. p. 4303–7. https://doi.org/10.1109/EMBC48229.2022.9871461.
Phillips C, Liaqat D, Gabel M, de Lara E. WristO2: reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters. In: 2021 IEEE international conference on Pervasive computing and communications workshops and other affiliated events (PerCom workshops); 2021, March. p. 623–9. https://doi.org/10.1109/PERCOMWORKSHOPS51409.2021.9430986.
Lim CJ, Park JW. Wearable transcutaneous oxygen sensor for health monitoring. Sensors Actuators A Phys. 2019;298:111607. https://doi.org/10.1016/J.SNA.2019.111607.
Patel V, Chesmore A, Legner CM, Pandey S. Trends in workplace wearable technologies and connected-worker solutions for next-generation occupational safety, health, and productivity. Adv Intelligent Syst. 2022;4(1):2100099. https://doi.org/10.1002/aisy.202100099.
Hearn EL, Byford J, Wolfe C, Agyei C, Hodkinson PD, Pollock RD, Smith TG. Measuring arterial oxygen saturation using wearable devices under varying conditions. Aerospace Med Human Perform. 2023;94(1):42–7. https://doi.org/10.3357/amhp.6078.2023.
Yi XI, Sun S, Su D. Wearable device and photoelectric pulse sensor component. U.S. patent application no. 17/622,517. 2022. https://patents.google.com/patent/US20220248968A1/.
Degala SKB, Pandey R, Mishra A, Tiwari AK, Tewari RP. IoT based low-cost pulse oximeter for remote health monitoring. In: International conference on advancements in interdisciplinary research. Cham: Springer Nature Switzerland; 2022, May. p. 191–8. https://doi.org/10.1007/978-3-031-23724-9_18.
Enoch AJ, English M, Shepperd S. Does pulse oximeter use impact health outcomes? A systematic review. Arch Dis Child. 2016;101(8):694–700. https://doi.org/10.1136/ARCHDISCHILD-2015-309638.
Comments (0)