Bonny T, Kashkash M, Ahmed F. An efficient deep reinforcement machine learning-based control reverse osmosis system for water desalination. Desalination. 2022;522: 115443.
Abdelsalam M, Bonny T. Iov road safety: vehicle speed limiting system. In: 2019 International conference on communications, signal processing, and their applications (ICCSPA). IEEE; 2019. p. 1–6.
Bonny T, Henkel J. Efficient code compression for embedded processors. IEEE Trans Very Large Scale Integr (VLSI) Syst. 2008;16(12):1696–707.
Tahoun N, Awad A, Bonny T. Smart assistant for blind and visually impaired people. In: Proceedings of the 2019 3rd international conference on advances in artificial intelligence. 2019. p. 227–31.
Bonny T, Henkel J. Instruction splitting for efficient code compression. In: Proceedings of the 44th annual design automation conference. 2007. p. 646–51.
Kaziha O, Bonny T. A comparison of quantized convolutional and lstm recurrent neural network models using mnist. In: 2019 international conference on electrical and computing technologies and applications (ICECTA). IEEE; 2019. p. 1–5.
Monterubbianesi R, Tosco V, Vitiello F, Orilisi G, Fraccastoro F, Putignano A, Orsini G. Augmented, virtual and mixed reality in dentistry: a narrative review on the existing platforms and future challenges. Appl Sci. 2022;12(2):877.
Kumar A, Bhadauria HS, Singh A. Descriptive analysis of dental X-ray images using various practical methods: a review. PeerJ Comput Sci. 2021;7: e620.
Article PubMed PubMed Central Google Scholar
Apostolakis D, Michelinakis G, Kamposiora P, Papavasiliou G. The current state of computer assisted orthognathic surgery: a narrative review. Comput Assist Orthognath Surg J Dent. 2022;119: 104052.
Ji Q, Huang J, He W, Sun Y. Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms. 2019;12(3):51.
Panyarak W, Wantanajittikul K, Suttapak W, Charuakkra A, Prapayasatok S. Feasibility of deep learning for dental caries classification in bitewing radiographs based on the iccms\(^}\) radiographic scoring system. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;135(2):272–81.
Bernauer SA, Zitzmann NU, Joda T. The use and performance of artificial intelligence in prosthodontics: a systematic review. Sensors. 2021;21(19):6628.
Article PubMed PubMed Central Google Scholar
Tekin BY, Ozcan C, Pekince A, Yasa Y. An enhanced tooth segmentation and numbering according to fdi notation in bitewing radiographs. Comput Biol Med. 2022;146: 105547.
Duman S, Yılmaz EF, Eşer G, Çelik Ö, Bayrakdar IS, Bilgir E, Costa ALF, Jagtap R, Orhan K. Detecting the presence of taurodont teeth on panoramic radiographs using a deep learning-based convolutional neural network algorithm. Oral Radiol. 2022;39:1–8.
Başaran M, Çelik Ö, Bayrakdar IS, Bilgir E, Orhan K, Odabaş A, Aslan AF, Jagtap R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol. 2021;38(3):1–7.
Campello VM, Gkontra P, Izquierdo C, Martin-Isla C, Sojoudi A, Full PM, Maier-Hein K, Zhang Y, He Z, Ma J, et al. Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m &ms challenge. IEEE Trans Med Imaging. 2021;40(12):3543–54.
Jang TJ, Kim KC, Cho HC, Seo JK. A fully automated method for 3d individual tooth identification and segmentation in dental cbct. arXiv preprint arXiv:2102.06060.
Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, Jiang C, Sun Y, Ma L, Huang J, et al. A fully automatic ai system for tooth and alveolar bone segmentation from cone-beam ct images. Nat Commun. 2022;13(1):1–11.
Kaziha O, Bonny T. A convolutional neural network for seizure detection. In: 2020 advances in science and engineering technology international conferences (ASET). IEEE; 2020. p. 1–5.
Al Nassan W, Bonny T, Obaideen K, Hammal AA. An lstm model-based prediction of chaotic system: analyzing the impact of training dataset precision on the performance. In: 2022 international conference on electrical and computing technologies and applications (ICECTA). IEEE; 2022. p. 337–342.
Moran M, Faria M, Giraldi G, Bastos L, Oliveira L, Conci A. Classification of approximal caries in bitewing radiographs using convolutional neural networks. Sensors. 2021;21(15):5192.
Article PubMed PubMed Central Google Scholar
Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23.
Article PubMed PubMed Central Google Scholar
Salih O, Duffy KJ. The local ternary pattern encoder–decoder neural network for dental image segmentation. IET Image Process. 2022;16(6):1520–30.
Rohrer C, Krois J, Patel J, Meyer-Lueckel H, Rodrigues JA, Schwendicke F. Segmentation of dental restorations on panoramic radiographs using deep learning. Diagnostics. 2022;12(6):1316.
Article PubMed PubMed Central Google Scholar
Kumari AR, Rao SN, Reddy PR. Design of hybrid dental caries segmentation and caries detection with meta-heuristic-based resnext-rnn. Biomed Signal Process Control. 2022;78: 103961.
Rad AE, Rahim MSM, Kolivand H, Norouzi A. Automatic computer-aided caries detection from dental X-ray images using intelligent level set. Multimed Tools Appl. 2018;77(21):28843–62.
Lin P, Huang P, Huang P, Hsu H, Chen C. Teeth segmentation of dental periapical radiographs based on local singularity analysis. Comput Methods Programs Biomed. 2014;113(2):433–45.
Majanga V, Viriri S. Dental images’ segmentation using threshold connected component analysis. Comput Intell Neurosci. 2021.
Al Nassan W, Bonny T, Obaideen K, Hammal AA. A customized convolutional neural network for dental bitewing images segmentation. In: 2022 international conference on electrical and computing technologies and applications (ICECTA). IEEE; 2022. p. 347–51.
Estai M, Tennant M, Gebauer D, Brostek A, Vignarajan J, Mehdizadeh M, Saha S. Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2022;134(2):262–70.
Kaya MC. Dental panoramic and bitewing X-ray image segmentation using u-net and transformer networks, Master’s thesis, Middle East Technical University. 2023.
Fatima A, Shafi I, Afzal H, Mahmood K, Díez IdlT, Lipari V, Ballester JB, Ashraf I. Deep learning-based multiclass instance segmentation for dental lesion detection. In: Healthcare, Vol. 11. MDPI; 2023. p. 347.
Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–65.
MATLAB, version (R2020a), The MathWorks Inc., Natick, Massachusetts, 2020.
Lee S, Oh S-I, Jo J, Kang S, Shin Y, Park J-W. Deep learning for early dental caries detection in bitewing radiographs. Sci Rep. 2021;11(1):1–8.
Moutselos K, Berdouses E, Oulis C, Maglogiannis I. Recognizing occlusal caries in dental intraoral images using deep learning. In: 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2019. p. 1617–20.
Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck ct images using convolutional neural networks. Med Phys. 2017;44(2):547–57.
Article PubMed PubMed Central Google Scholar
Amorim PH, Moraes TF, Silva JV, Pedrini H, Ruben RB. Reconstruction of panoramic dental images through bézier function optimization. Front Bioeng Biotechnol. 2020;8:794.
Comments (0)