Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk-Borne Pathogen Listeria monocytogenes

Abbas, M. N., Khattak, B., Sajid, A., Islam, T., Jamal, Q., & Munir, S. (2013). Biochemical and bacteriological analysis of cows’ milk samples collected from District Peshawar. International Journal of Pharmaceutical Sciences Review and Research, 21, 221–2261.

Google Scholar 

Anjali Kumar, S., Korra, T., Thakur, R., Arutselvan, R., Kashyap, A. S., Nehela, Y., Chaplygin, V., Minkina, T., & Keswani, C. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, 8, 100154.

Article  Google Scholar 

Arasu, A., Pingley, V., Prabha, N., Ravikumar, O. V. R., Annathurai, K., Kasirajan, S., Govindasamy, A., Alwahibi, M. S., Elshikh, M. S., Abdel Gawwad, M. R., et al. (2021). Impact and fungitoxic spectrum of Trachyspermum ammi against Candida albicans, an opportunistic pathogenic fungus commonly found in human gut that causes Candidiasis infection. Journal of Infection and Public Health, 14, 1854–1863.

Article  PubMed  Google Scholar 

Beigoli, S., Behrouz, S., Memar Zia, A., Ghasemi, S. Z., Boskabady, M., Marefati, N., Kianian, F., Khazdair, M. R., El-Seedi, H., & Boskabady, M. H. (2021). Effects of Allium cepa and its constituents on respiratory and allergic disorders: A comprehensive review of experimental and clinical evidence. Evidence-Based Complementary and Alternative Medicine, 2021, 5554259.

Article  PubMed  PubMed Central  Google Scholar 

Benkeblia, N. (2005). Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technology, 48, 753–759.

Article  CAS  Google Scholar 

Beristain-Bauza, S. D. C., Hernández-Carranza, P., Cid-Pérez, T. S., Ávila-Sosa, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Reviews International, 35, 407–426.

Article  CAS  Google Scholar 

Brooks, D. R., Hoberg, E. P., Boeger, W. A., & Trivellone, V. (2022). Emerging infectious disease: An underappreciated area of strategic concern for food security. Transboundary and Emerging Diseases, 69, 254–267.

Article  PubMed  Google Scholar 

Cheng, C., Sun, J., Yu, H., Ma, T., Guan, C., Zeng, H., Zhang, X., Chen, Z., & Song, H. (2020). Listeriolysin O pore-forming activity is required for ERK1/2 phosphorylation during Listeria monocytogenes infection. Frontiers in Immunology, 11, 1146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Oliveira Mota, J., Boué, G., Prévost, H., Maillet, A., Jaffres, E., Maignien, T., Arnich, N., Sanaa, M., & Federighi, M. (2021). Environmental monitoring program to support food microbiological safety and quality in food industries: A scoping review of the research and guidelines. Food Control, 130, 108283.

Article  Google Scholar 

Deddefo, A., Mamo, G., Asfaw, M., & Amenu, K. (2023). Factors affecting the microbiological quality and contamination of farm bulk milk by Staphylococcus aureus in dairy farms in Asella, Ethiopia. BMC Microbiology, 23, 65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupeyron, M., Baril, T., Bass, C., & Hayward, A. (2020). Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mobile DNA, 11, 21.

Article  PubMed  PubMed Central  Google Scholar 

Farber, J. M., & Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiological Reviews, 55, 476–511.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farber, J. M., Zwietering, M., Wiedmann, M., Schaffner, D., Hedberg, C. W., Harrison, M. A., Hartnett, E., Chapman, B., Donnelly, C. W., Goodburn, K. E., et al. (2021). Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control, 123, 107601.

Article  CAS  Google Scholar 

Furuse, Y., Suzuki, A., Kamigaki, T., & Oshitani, H. (2009). Evolution of the M gene of the influenza A virus in different host species: Large-scale sequence analysis. Virology Journal, 6, 67.

Article  PubMed  PubMed Central  Google Scholar 

Ginovyan, M., Ayvazyan, A., Nikoyan, A., Tumanyan, L., & Trchounian, A. (2020). Phytochemical screening and detection of antibacterial components from crude extracts of some armenian herbs using TLC-bioautographic technique. Current Microbiology, 77, 1223–1232.

Article  CAS  PubMed  Google Scholar 

Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology, 52, 1212–1217.

Article  CAS  PubMed  Google Scholar 

Guru, A., Murugan, R., & Arockiaraj, J. (2023). Histone acetyltransferases derived RW20 protects and promotes rapid clearance of Pseudomonas aeruginosa in zebrafish larvae. International Microbiology. https://doi.org/10.1007/s10123-023-00391-9

Article  PubMed  Google Scholar 

Hannan, A., Humayun, T., Hussain, M. B., Yasir, M., & Sikandar, S. (2010). In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholerae. Journal of Ayub Medical College, Abbottabad, 22, 160–163.

PubMed  Google Scholar 

Jamila, M., Ali, M. Z., Sultana, S., Islam, M. A., & Khatun, M. M. (2020). Isolation, identification and antibiotic sensitivity test of bacteria in raw cow milk obtained from different sources. EC Microbiology, 4, 32–41.

Google Scholar 

Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7, 1–7.

Article  Google Scholar 

Jayamanne, V. S., & Samarajeewa, U. (2001). Incidence and detection of Listeria monocytogenes in milk and milk products of Sri Lanka. Tropical Agricultural Research, 13, 42–50.

Google Scholar 

Jeffs, E., Williman, J., Brunton, C., Gullam, J., & Walls, T. (2020). The epidemiology of listeriosis in pregnant women and children in New Zealand from 1997 to 2016: An observational study. BMC Public Health, 20, 116.

Article  PubMed  PubMed Central  Google Scholar 

John, J., Joy, W. C., & Jovana, K. (2020). Prevalence of Listeria spp. in produce handling and processing facilities in the Pacific Northwest. Food Microbiology, 90, 103468.

Article  CAS  Google Scholar 

Kayode, A. J., & Okoh, A. I. (2022). Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and One Health perspective. PLoS One, 17, e0270993.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J. H. (1997). Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria. The Journal of Nihon University School of Dentistry, 39, 136–141.

Article  CAS  PubMed  Google Scholar 

Libera, K., Konieczny, K., Grabska, J., Szopka, W., Augustyniak, A., & Pomorska-Mól, M. (2022). Selected livestock-associated zoonoses as a growing challenge for public health. Infectious Disease Reports, 14, 63–81.

Article  PubMed  PubMed Central  Google Scholar 

Liu, S., He, X., Zhang, T., Zhao, K., Xiao, C., Tong, Z., Jin, L., He, N., Deng, Y., Li, S., et al. (2022). Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. Chinese Chemical Letters, 33, 1933–1935.

Article  Google Scholar 

Lovett, J., Francis, D. W., & Hunt, J. M. (1987). Listeria monocytogenes in raw milk: Detection, incidence, and pathogenicity. Journal of Food Protection, 50, 188–192.

Article  CAS  PubMed  Google Scholar 

Manjunathan, T., Guru, A., Arokiaraj, J., & Gopinath, P. (2021). 6-Gingerol and semisynthetic 6-gingerdione counteract oxidative stress induced by ROS in zebrafish. Chemistry & Biodiversity, 18, e2100650.

Article  CAS  Google Scholar 

Manjunathan, T., Guru, A., Haridevamuthu, B., Dandela, R., Arokiaraj, J., & Gopinath, P. (2023). 6-Gingerol derived semisynthetic analogs mitigates oxidative stress, reverses acrylamide induced neurotoxicity in zebrafish. New Journal of Chemistry, 47, 10488–10492.

Article  CAS  Google Scholar 

Móricz, Á. M., Häbe, T. T., Ott, P. G., & Morlock, G. E. (2019). Comparison of high-performance thin-layer with overpressured layer chromatography combined with direct bioautography and direct analysis in real time mass spectrometry for tansy root. Journal of Chromatography A, 1603, 355–360.

Article  PubMed  Google Scholar 

Morya, S., Amoah, A. E. D. D., & Snaebjornsson, S. O. (2020). Food poisoning hazards and their consequences over food safety. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for sustainable environment and health (pp. 383–400). Elsevier.

Chapter  Google Scholar 

Murugan, R., Subramaniyan, S., Priya, S., Ragavendran, C., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Guru, A., & Arockiaraj, J. (2023). Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. Aquatic Toxicology, 260, 106578.

Article  CAS  PubMed  Google Scholar 

Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 19, 311–331.

Article  PubMed  Google Scholar 

Ortiz, M. (2015). Antimicrobial activity of onion and ginger against two food borne pathogens Escherichia coli and Staphylococcus aureus. MOJ Food Processing & Technology, 1, 98–106.

Article  Google Scholar 

Oyawoye, O. M., Olotu, T. M., Nzekwe, S. C., Idowu, J. A., Abdullahi, T. A., Babatunde, S. O., Ridwan, I. A., Batiha, G. E., Idowu, N., Alorabi, M., et al. (2022). Antioxidant potential and antibacterial activities of Allium cepa (onion) and Allium sativum (garlic) against the multidrug resistance bacteria. Bulletin of the National Research Centre, 46, 214.

Article  Google Scholar 

Parthasarathy, V., & Rajendran, R. B. (2022). Isolation and molecular profiling of thermoresistant bacteria from chimneys of baking industries of Madurai, Tamilnadu, India. International Journal of Life Science and Pharma Research, 10, 73–76.

Google Scholar 

Petrišič, N., Kozorog, M., Aden, S., Podobnik, M., & Anderluh, G. (2021). The molecular mechanisms of listeriolysin O-induced lipid membrane damage. Biochimica Et Biophysica Acta. Biomembranes, 1863, 183604.

Article  PubMed  Google Scholar 

Pradhan, A. K., & Karanth, S. (2023). Zoonoses from animal meat and milk. In M. E. Knowles, L. E. Anelich, A. R. Boobis, & B. Popping (Eds.), Present knowledge in food safety (pp. 394–411). Elsevier.

Chapter  Google Scholar 

Rosenow, E. M., & Marth, E. H. (1987). Growth of Listeria monocytogenes

Comments (0)

No login
gif