Altered functional brain networks in problematic smartphone and social media use: resting-state fMRI study

Ahn, J., Lee, D., Namkoong, K., & Jung, Y. C. (2021). Altered functional connectivity of the salience network in problematic smartphone users. Frontiers in Psychiatry, 12, 636730.

Article  PubMed  PubMed Central  Google Scholar 

Bányai, F., Zsila, Á., Király, O., Maraz, A., Elekes, Z., Griffiths, M. D., Andreassen, C. S., & Demetrovics, Z. (2017). Problematic Social Media Use: Results from a Large-Scale Nationally Representative Adolescent Sample. PLoS ONE, 12(1), e016983910. https://doi.org/10.1371/JOURNAL.PONE.0169839

Article  Google Scholar 

Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. https://doi.org/10.1001/ARCHPSYC.1961.01710120031004

Article  PubMed  CAS  Google Scholar 

Csibi, S., Griffiths, M. D., Cook, B., Demetrovics, Z., & Szabo, A. (2018). The Psychometric Properties of the Smartphone Application-Based Addiction Scale (SABAS). International Journal of Mental Health and Addiction, 16, 393–403. https://doi.org/10.1007/s11469-017-9787-2

Article  PubMed  Google Scholar 

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853. https://doi.org/10.1073/PNAS.0601417103

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dieter, J., Hoffmann, S., Mier, D., Reinhard, I., Beutel, M., Vollstädt-Klein, S., Kiefer, F., Mann, K., & Leménager, T. (2017). The role of emotional inhibitory control in specific internet addiction – an fMRI study. Behavioural Brain Research, 324, 1–14. https://doi.org/10.1016/J.BBR.2017.01.046

Article  PubMed  Google Scholar 

Dong, G., Huang, J., & Du, X. (2012). Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts. Behavioral and Brain Functions: BBF, 8, 41. https://doi.org/10.1186/1744-9081-8-41

Article  PubMed  PubMed Central  Google Scholar 

He, Q., Turel, O., & Bechara, A. (2017). Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Scientific Reports, 7(1), 1–8.

Google Scholar 

Hong, S. B., Zalesky, A., Cocchi, L., Fornito, A., Choi, E. J., Kim, H. H., Suh, J. E., Kim, C. D., Kim, J. W., & Yi, S. H. (2013). Decreased functional brain connectivity in adolescents with internet addiction. PLoS ONE, 8(2), e57831. https://doi.org/10.1371/JOURNAL.PONE.0057831

Article  PubMed  PubMed Central  CAS  Google Scholar 

Horvath, J., Mundinger, C., Schmitgen, M. M., Wolf, N. D., Sambataro, F., Hirjak, D., Kubera, K. M., Koenig, J., & Christian Wolf, R. (2020). Structural and functional correlates of smartphone addiction. Addictive Behaviors, 105, 106334. https://doi.org/10.1016/J.ADDBEH.2020.106334

Article  PubMed  Google Scholar 

Kraut, R., Patterson, M., Lundmark, V., Kiesler, S., Mukopadhyay, T., & Scherlis, W. (1998). Internet paradox: A social technology that reduces social involvement and psychological well-being? American Psychologist, 53(9), 1017–1031. https://doi.org/10.1037/0003-066X.53.9.1017

Article  PubMed  CAS  Google Scholar 

Lee, D., Lee, J., Namkoong, K., & Jung, Y. C. (2021). Altered functional connectivity of the dorsal attention network among problematic social network users. Addictive Behaviors, 116, 106823. https://doi.org/10.1016/J.ADDBEH.2021.106823

Article  PubMed  Google Scholar 

Lin, F., Zhou, Y., Du, Y., Zhao, Z., Qin, L., Xu, J., & Lei, H. (2015). Aberrant corticostriatal functional circuits in adolescents with internet addiction disorder. Frontiers in Human Neuroscience, 9(6). https://doi.org/10.3389/FNHUM.2015.00356/PDF

Liu, D., Liu, X., Long, Y., Xiang, Z., Wu, Z., Liu, Z., ... & Tang, S. (2022). Problematic smartphone use is associated with differences in static and dynamic brain functional connectivity in young adults. Frontiers in Neuroscience, 16, 1010488.

Montag, C., & Becker, B. (2023). Neuroimaging the effects of smartphone (over-) use on brain function and structure—a review on the current state of MRI-based findings and a roadmap for future research. Psychoradiology, 3, kkad001.

Article  Google Scholar 

Nie, J., Zhang, W., & Liu, Y. (2017). Exploring depression, self-esteem and verbal fluency with different degrees of internet addiction among Chinese college students. Comprehensive Psychiatry, 72, 114–120. https://doi.org/10.1016/J.COMPPSYCH.2016.10.006

Article  PubMed  Google Scholar 

Nomi, J. S., & Uddin, L. Q. (2015). Developmental changes in large-scale network connectivity in autism.https://doi.org/10.1016/j.nicl.2015.02.024

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Article  PubMed  CAS  Google Scholar 

Pariyadath, V., Gowin, J. L., & Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: From individual loci to complex networks. Progress in Brain Research, 224, 155–173. https://doi.org/10.1016/BS.PBR.2015.07.015

Article  PubMed  Google Scholar 

Park, C.-H., & Kim, Y. J. (2013). Intensity of social network use by involvement: A study of young Chinese users. International Journal of Business and Management, 8(6). https://doi.org/10.5539/IJBM.V8N6P22

Poli, R. (2017). Internet addiction update: Diagnostic criteria, assessment and prevalence. Neuropsychiatry, 7(1), 04–08.

Article  Google Scholar 

Sevelko, K., Bischof, G., Bischof, A., Besser, B., John, U., Meyer, C., & Rumpf, H.-J. (2018). The role of self-esteem in Internet addiction within the context of comorbid mental disorders: Findings from a general population-based samplehttps://doi.org/10.1556/2006.7.2018.130

Sharifat, H., Rashid, A. A., & Suppiah, S. (2018). Systematic review of the utility of functional MRI to investigate internet addiction disorder: Recent updates on resting state and task-based fMRI. Malaysian Journal of Medicine and Health Sciences, 14(1), 21–33.

Google Scholar 

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158–165. https://doi.org/10.1093/CERCOR/BHR099

Article  PubMed  CAS  Google Scholar 

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. https://doi.org/10.1073/PNAS.0905267106

Article  PubMed  PubMed Central  CAS  Google Scholar 

Smith, D. V., Utevsky, A. V., Bland, A. R., Clement, N., Clithero, J. A., Harsch, A. E. W., McKell Carter, R., & Huettel, S. A. (2014). Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. NeuroImage, 95, 1–12. https://doi.org/10.1016/J.NEUROIMAGE.2014.03.042

Article  PubMed  Google Scholar 

Soleymani, A., & Farahati, M. (2014). The impact of excessive internet use on communication skills and mental health in cafe internet users. International Journal of School Health, 1(2). https://doi.org/10.17795/INTJSH-23524

Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: Lessons learned and a road ahead. NeuroImage, 62(4), 2281–2295. https://doi.org/10.1016/J.NEUROIMAGE.2012.01.117

Article  PubMed  Google Scholar 

Venter, E. (2017). Bridging the communication gap between generation Y and the baby boomer generation. International Journal of Adolescence and Youth, 22(4), 497–507. https://www.tandfonline.com/doi/full/10.1080/02673843.2016.1267022, https://doi.org/10.1080/02673843.2016.1267022

Wang, L., Wu, L., Lin, X., Zhang, Y., Zhou, H., Du, X., & Dong, G. (2016). Altered brain functional networks in people with Internet gaming disorder: Evidence from resting-state fMRI. Psychiatry Research - Neuroimaging, 254, 156–163. https://doi.org/10.1016/J.PSCYCHRESNS.2016.07.001

Article  PubMed  Google Scholar 

Wang, L., Shen, H., Lei, Y., Zeng, L. L., Cao, F., Su, L., Yang, Z., Yao, S., & Hu, D. (2017). Altered default mode, fronto-parietal and salience networks in adolescents with Internet addiction. Addictive Behaviors, 70, 1–6. https://doi.org/10.1016/J.ADDBEH.2017.01.021

Article  PubMed  CAS  Google Scholar 

Wang, Y., Qin, Y., Li, H., Yao, D., Sun, B., Li, Z., Li, X., Dai, Y., Wen, C., Zhang, L., Zhang, C., Zhu, T., & Luo, C. (2019). Abnormal functional connectivity in cognitive control network, default mode network, and visual attention network in internet addiction: A resting-state fMRI study. Frontiers in Neurology, 10, 1006. https://doi.org/10.3389/FNEUR.2019.01006/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Wilmer, H. H., Sherman, L. E., & Chein, J. M. (2017). Smartphones and cognition: A review of research exploring the links between mobile technology habits and cognitive functioning. Frontiers in Psychology, 8(4). https://doi.org/10.3389/FPSYG.2017.00605

Zheng, H., Hu, Y., Wang, Z., Wang, M., Du, X., & Dong, G. (2019). Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: Similarities and differences across different paradigms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 94. https://doi.org/10.1016/J.PNPBP.2019.109656

Comments (0)

No login
gif