Identification of time of death of cats according to histological changes in some organs

Keywords: identifying time of death; Felis silvestris catus; microscopc changes; internal organs; skeletal muscles

Abstract Determining the time of an animal’s death is an extremely relevant subject in the practice of modern forensic medicine, because the issue often arises when investigating crimes related to animal abuse, in particular, with domestic cats Felis silvestris catus (Linnaeus, 1758). Methods of identifying time of cats’ death are currently developed insufficiently and their introduction into the veterinary-forensic practice has been limited, including the histological method we have employed. We used five corpses of cats, from which we periodically, after certain time periods, gathered the material for histological study, sampling such organs as the liver, kidneys, lungs, heart (myocardium), and the skeletal muscles. From the collected material, we made histological sections and stained them with hematoxylin and eosin. We determined the general patterns in changes occurring in the internal organs of cats over time, namely changes in the staining intensity of the cell elements and intercellular structures on the histopreparations; formation of detritus-filled cavities; a number of distinctive changes in the connective-tissue stroma of the organs; emergence of baciliform bacteria in the tissues and formation of their colonies. In the muscle tissue, we found specific features such as loss of alignment and emergence of transversal grooves with subsequent fragmentation. The study revealed that the development of those changes in each organ clearly correlated with time that has passed since each animals had died. Thus, a complex evaluation of detected changes can give a more accurate – compared with other existing methods – assessment of the time of death of a corpse submitted to forensic veterinary examination. We recommend using the histological method for animals presumed to have been dead for no more than 18 days, because later the tissue disintegration reaches such a level that complicates the correlation of changes with time. We consider it promising to study the time of death of domestic cats using other methods for identifying criteria for postmortem intervals longer than 18 days, and also identifying time of death in other species of animals.

References

Ave, M. T., Ordonez-Mayan, L., Camina, M., Febrero-Bande, M., & Munoz-Barus, J. I. (2021). Estimation of the post-mortem interval: Effect of storage conditions on the determination of vitreous humour [K+]. Science and Justice, 61(5), 697–602.
Byrd, J., & Sutton, L. (2020). Forensic entomology for the investigator. WIREs Forensic Science, 2(4), e1370.
Byrd, J., & Sutton, L. (2021). A review of the forensic entomology literature in the South-Eastern United States. WIREs Forensic Science, 3(5), e1411.
Ceciliason, A. S., Gunnar, M. A., Nyberg, S., & Sandler, H. (2021). Histological quantification of decomposed human livers: A potential aid for estimation of the post-mortem interval? International Journal of Legal Medicine, 135, 253–267.
Cienfuegos, A. J., Rotellar, F., Jorge, B., Martínez-Regueira, F., Pardo, F., & Hernandez-Lizoain, J. L. (2014). Liver regeneration – the best kept secret. A model of tissue injury response. Revista Espanola de Enfermedades Digestivas, 106(3), 171–194.
Davydenko, I.  S. (2022). Mozhlyvosti zastosuvannia lazernykh poliaryzatsijnykh metodiv dlia vyiavlennia patolohichnykh protsesiv u tkanyni pechinky z chasovym monitorynhom dynamiky zmin zalezhno vid davnosti nastannia smerti [Possibilities of application of laser polarization methods for the detection of pathological processes in the liver tissue with temporary monitoring of the dynamics of changes depending on the time since death]. Sudovo-Medychna Ekspertyza, 1, 50–57 (in Ukrainian).
De-Giorgio, F., Grassi, S., d’Aloja, E., & Paskali, V. L. (2021). Post-mortem ocular changes and time since death: Scoping review and future perspective. Legal Medicine, 50, 101862.
Delgado, V., Topa, N., & Pires, I. (2021). Veterinary forensic histopathology. Academic Forensic Pathology, 11(2), 72–74.
Doukas, D. (2022). Non-accidental injuries in dogs and cats: Review of post-mortem forensic evaluations and the social significance of small animal practice. Journal of the Hellenic Veterinary Medical Society, 73(1), 3543–3552.
Garczynska, K., Tzschatzsch, H., Assili, S., Kühl, A. A., Hackel, A., & Schellenberger, E. (2021). Еffect of post-mortem interval and perfusion on the biophysical properties of ex vivo liver tissue investigated longitudinally by MRE and DWI. Frontiers in Physiology, 3(12), 696304.
Garland, J., Olds, K., Rousseau, G., Palmiere, C., Ondruschka, B., & Kesha, K. (2020). Using vitreous humour and cerebrospinal fluid electrolytes in estimating post-mortem interval – an exploratory study. Australian Journal of Forensic Sciences, 52(6), 626–633.
Heba El-Sayed, M., El-Shafei, D. A., Abouhashem, S. N., & Alaa El-Din, E. A. (2023). Could skeletal muscle changes provide a reliable method for estimating the time since death: A histological, biochemical, and DNA study. Australian Journal of Forensic Sciences, 55(1), 46–58.
Hryhorian, E. K. (2019). Kontent analiz sudovo-medychnoji otsinky davnosti nastannia smerti [Content analysis of the forensic medical assessment of postmortem interval]. Ukrainskyj Zhurnal Medytsyny, Biolohiji ta Sportu, 22, 265–270 (in Ukrainian).
Huang, W.-H., Kuo, C.-C., Hu, H.-Y., Pan, C.-H., Taiching, L. A., & Liu, C.-H. (2020). Manual strangulation of a stray cat: Linking pathologic findings with the crime. Journal of Veterinary Forensic Sciences, 1(2), 128634.
Ivorra, T., Martínez-Sanchez, A., & Rojo, S. (2021). Review of Synthesiomyia nudiseta (Diptera: Muscidae) as a useful tool in forensic entomology. International Journal of Legal Medicine, 135(5), 2003–2015.
Jeong, S. J., Park, S. H., Park, J. E., Park, S. H., Moon, T. Y., Shin, S. E., & Lee, J. W. (2020). Extended model for estimation of ambient temperature for postmortem interval (PMI) in Korea. Forensic Science International, 309, 110196.
Leonard, C. K., Worden, N., Boettcher, L. M., Dickinson, E., Omstead, M. K., Burrows, M. A., & Hartstone-Rose, A. (2021). Anatomical and ontogenetic influences on muscle density. Scientific Reports, 11(1), 2114.
Lytvynenko, O.  I. (2022). Metod rekonstruktsiji polikrystalichnoji struktury histolohichnykh zriziv u vyznachenni davnosti utvorennia ushkodzhen’ vnutrishnikh orhaniv liudyny [Method of reconstruction of polycrystalline structure of histological cuts in determination of the stature of formation of damages of internal bodies]. Sudovo-Medychna Ekspertyza, 1, 81–86 (in Ukrainian).
Mashaly, A., & Ibrahim, A. (2022). Forensic entomology research in Egypt: A review article. Egyptian Journal of Forensic Sciences, 12, 11.
Matuszewski, S. (2021). Post-mortem interval estimation based on insect evidence: Current challenges. Insects, 12(4), 314.
Miles, L. K., Finaughty, A. D., & Gibbon, E. V. (2020). A review of experimental design in forensic taphonomy: Moving towards forensic realism. Forensic Sciences Research, 5(4), 249–259.
Mirhish, S. M., & Nassar, R. A. (2013). Anatomical and histological study of trachea and lung in local breed cats (Felis catus domesticus L.). Basrah Journal of Veterinary Research, 3(2), 266–272.
Mohammed, A. T., Abdelfattah-Hassan, A., Abdo, S., Ali Maha, I. M., & Wagih, E. (2023). Estimation of the time since death based on the post-mortem histopathological changes in a rat brain: An observational study. Journal of Advanced Veterinary Research, 13(3), 526–530.
Mori, C., & Matsumura, S. (2021). Current issues for mammalian species identification in forensic science: A review. International Journal of Legal Medicine, 135(1), 3–12.
Munmun, S., Kamal, B. D. C., Athang, S., & Jahan, A. N. S. (2020). Hair histology and ultrastructure of few wild and semi-wild mammals: A forensic approach. The Indian Journal of Veterinary Sciences and Biotechnology, 10(3), 75–79.
Nation, P. N. (2021). Forensic submissions in a diagnostic pathology practice: A 10-year review. The Canadian Veterinary Journal, 62(4), 384–388.
Nioi, M., Napoli, P. E., Demontis, R., Locci, E., Fossarello, M., & d’Aloja, E. (2021). Postmortem ocular findings in the optical coherence tomography era: A proof of concept study based on six forensic cases. Diagnostics, 11(3), 413.
Parry, M. A. N., & Stoll, A. (2020). The rise of veterinary forensics. Forensic Science International, 306, 110069.
Perez-Martínez, C., Bonete, G. P., Perez-Carceles, M. D., & Luna, A. (2020). Influence of the nature of death in biochemical analysis of the vitreous humour for the estimation of post-mortem interval. Australian Journal of Forensic Sciences, 52(5), 508–517.
Piegari, G., De Pasquale, V., d'Aquino, I., De Biase, D., Caccia, G., Campobasso, P. C., Tafuri, S., Russo, V., & Paciello, O. (2023). Evaluation of muscle proteins for estimating the post-mortem interval in veterinary forensic pathology. Animals, 13(4), 563.
Qayyum, M. A. (1972). Anatomy and histology of the specialized tissues of the heart of the domestic cat (Felis catus). Acta Anatomica, 82(3), 352–367.
Rajamani, M. N., Rao, B., & Ravishankar, R. (2021). Estimation of time since death using vitreous humour potassium values. Indian Journal of Forensic Medicine and Toxicology, 15(2), 2751–2757.
Rebollada-Merino, A., Barcena, C., Mayoral-Alegre, J. F., García-Real, I., Domínguez, L., & Rodríguez-Bertos, A. (2020). Forensic cases of suspected dog and cat abuse in the Community of Madrid (Spain), 2014–2019. Forensic Science International, 316, 110522.
Romano, C. M., Dorman, C. D., & Gaskill, L. C. (2020). Postmortem veterinary toxicology: Animal death investigation and the veterinary diagnostic laboratory. WIREs Forensic Science, 2(5), e1375.
Saber, M. T., Omran, H. F. B., Deib, M. E. M., El-Sharkawy, I. N., Metwally, M., & Abd-Elhakim, Y. M. (2021). Early postmortem biochemical, histological, and immunohistochemical alterations in skeletal muscles of rats exposed to boldenone undecylenate: Forensic implication. Journal of Forensic and Legal Medicine, 83, 102248.
Sapienza, D., Asmundo, A., Silipigni, S., Barbaro, U., Cinquegrani, A., Granata, F., Barresi, V., Gualniera, P., Bottari, A., & Gaeta, M. (2020). Feasibility study of MRI muscles molecular imaging in evaluation of early post-mortem interval. Scientific Reports, 10(1), 392.
Sarkisova, Y. V. (2021). Diahnostychni mozhlyvosti tochnoho vstanovlennia davnosti nastannia smerti za kontsentratsijieju elektrolitiv u sklystomu tili oka liudyny [Diagnostic possibilities of accurate determination of the time since death on the concentration of electrolytes in the vitreous body of the human eye]. Sudovo-Medychna Ekspertyza, 1, 79–85 (in Ukrainian).
Sarkisova, Y. V., & Malanchuk, S. M. (2020). Spektralno-selektyvna lazerno-indukovana avtofluorestsentna mikroskopija polikrystalichnoji fraktsiji sklystoho tila liudyny v diahnostytsi davnosti nastannia smerti [Spectral-selective laser-induced autofluorescent microscopy of polycrystalline fraction of the human vitreous body in diagnostics time since death]. Sudovo-Medychna Ekspertyza, 1, 61–69 (in Ukrainian).
Savka, I. H., Kozan, N. M., Dunaiev, O. V., & Oliinyk, I. Y. (2021). Vstanovlennia tochnykh kryterijiv diahnostyky davnosti nastannia smerti v sudovo-medychnij praktytsi [Establishment of accurate criteria for diagnosis of the time since death in forensic medical practice]. Sudovo-Medychna Ekspertyza, 1, 18–24 (in Ukrainian).
Sokol, V.  K. (2022). Osoblyvosti mikroskopichnykh zmin tkanyny orhanizmu liudyny na riznykh promizhkakh davnosti nastannia smerti [Peculiarities of microscopic changes in the tissue of the human organism at different periods of death]. Sudovo-Medychna Ekspertyza, 1, 30–34 (in Ukrainian).
Viciano, J., Lopez-Lazaro, S., & Tanga, C. (2022). Post-mortem dental profile as a powerful tool in animal forensic investigations – a review. Animals, 12(16), 2038.
Voronov, V. T. (2022). Tendentsiji rozvytku sudovo-medychnykh zasobiv i tekhnolohiji zadlia mozhlyvosti tochnoho vstanovlennia davnosti nastannia smerti [Trends in the development of forensic medical technologies for the possibility of accurate determination of the time since death]. Sudovo-Medychna Ekspertyza, 1, 18–23 (in Ukrainian).
Watson, E., & Baucom, J. K. (2020). Two case studies in veterinary forensic imaging and a brief literature review. Forensic Imaging, 21(4), 200382.
Weidner, M. L., & Hans, R. K. (2021). A review of forensic entomology literature in the Northeastern United States. WIREs Forensic Science, 3(5), e1402.
Williams, T. M., Dobson, G. P., Mathieu-Costello, O., Morsbach, D., Worley, M. B., & Phillips, J. A. (1997). Skeletal muscle histology and biochemistry of an elite sprinter, the African cheetah. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 167(8), 527–535.
Yamada, K., Satoh, K., Kanai, E., & Madarame, H. (2023). Role of autopsy imaging in veterinary forensic medicine: Experiences in 39 cases. Journal of Veterinary Medical Science, 85(3), 301–307.
Yeager, A. E., & Anderson, W. I. (1989). Study of association between histologic features and echogenicity of architecturally normal cat kidneys. American Journal of Veterinary Research, 50(6), 860–863.
Yitbarek, D., & Dagnaw, G. G. (2022). Application of advanced imaging modalities in veterinary medicine: A review. Veterinary Medicine: Research and Reports, 13, 117–130.
Zhang, M. (2022). Forensic imaging: A powerful tool in modern forensic investigation. Forensic Sciences Research, 7(3), 385–392.

Comments (0)

No login
gif