Atluri VL, Xavier MN, De Jong MF et al (2011) Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 65:523–541. https://doi.org/10.1146/annurev-micro-090110-102905
Article CAS PubMed Google Scholar
Aznar MN, Samartino LE, Humblet M-F, Saegerman C (2014) Bovine brucellosis in Argentina and bordering countries: update. Transbound Emerg Dis 61:121–133. https://doi.org/10.1111/tbed.12018
Article CAS PubMed Google Scholar
Baily GG, Krahn JB, Drasar BS, Stoker NG (1992) Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg 95:271–275
Bruijns BB, Tiggelaar RM, Gardeniers JGE (2016) Fluorescent cyanine dyes for the quantification of low amounts of dsDNA. Anal Biochem 511:74–79. https://doi.org/10.1016/j.ab.2016.07.022
Article CAS PubMed Google Scholar
Cao X, Li Z, Liu Z et al (2018) Molecular epidemiological characterization of Brucella isolates from sheep and yaks in northwest China. Transbound Emerg Dis 65:e425–e433. https://doi.org/10.1111/tbed.12777
Article CAS PubMed Google Scholar
Chen X, Zhao L, Wang J et al (2022) Rapid visual detection of anisakid nematodes using recombinase polymerase amplification and SYBR Green I. Front Microbiol 13:1026129. https://doi.org/10.3389/fmicb.2022.1026129
Article PubMed PubMed Central Google Scholar
Chen Z, Wang Y, Wang Z et al (2013) Improvement and advancement of early diagnosis of human brucellosis in window period. Clin Infect Dis 57:322–323. https://doi.org/10.1093/cid/cit198
Chlebicz A, Śliżewska K (2018) Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int J Environ Res Public Health 15:863. https://doi.org/10.3390/ijerph15050863
Article CAS PubMed PubMed Central Google Scholar
Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62:947–958. https://doi.org/10.1373/clinchem.2015.245829
Article CAS PubMed PubMed Central Google Scholar
Deqiu S, Donglou X, Jiming Y (2002) Epidemiology and control of brucellosis in China. Vet Microbiol 90:165–182. https://doi.org/10.1016/S0378-1135(02)00252-3
Elsohaby I, Kostoulas P, Elsayed AM et al (2022) Bayesian evaluation of three serological tests for diagnosis of Brucella infections in dromedary camels using latent class models. Prev Vet Med 208:105771. https://doi.org/10.1016/j.prevetmed.2022.105771
Gumaa MM, Cao X, Li Z et al (2019) Establishment of a recombinase polymerase amplification (RPA) assay for the detection of Brucella spp. Infection Mol Cell Probes 47:101434. https://doi.org/10.1016/j.mcp.2019.101434
Article CAS PubMed Google Scholar
Khurana SK, Sehrawat A, Tiwari R et al (2021) Bovine brucellosis - a comprehensive review. Vet Q 41:61–88. https://doi.org/10.1080/01652176.2020.1868616
Article CAS PubMed PubMed Central Google Scholar
Mayfield JE, Bricker BJ, Godfrey H et al (1988) The cloning, expression, and nucleotide sequence of a gene coding for an immunogenic Brucella abortus protein. Gene 63:1–9. https://doi.org/10.1016/0378-1119(88)90540-9
Article CAS PubMed Google Scholar
Pérez-Sancho M, García-Seco T, Arrogante L et al (2013) Development and evaluation of an IS711-based loop mediated isothermal amplification method (LAMP) for detection of Brucella spp. on clinical samples. Res Vet Sci 95:489–494. https://doi.org/10.1016/j.rvsc.2013.05.002
Article CAS PubMed Google Scholar
Riley LW (2020) Extraintestinal foodborne pathogens. Annu Rev Food Sci Technol 11:275–294. https://doi.org/10.1146/annurev-food-032519-051618
Tao J, Liu W, Ding W et al (2020) A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. J Food Sci 85:744–754. https://doi.org/10.1111/1750-3841.15033
Article CAS PubMed Google Scholar
Whatmore AM, Davison N, Cloeckaert A et al (2014) Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol 64:4120–4128. https://doi.org/10.1099/ijs.0.065482-0
Article CAS PubMed PubMed Central Google Scholar
Yagupsky P, Morata P, Colmenero JD (2019) Laboratory diagnosis of human brucellosis. Clin Microbiol Rev 33:e00073-e119. https://doi.org/10.1128/CMR.00073-19
Article PubMed PubMed Central Google Scholar
Yamket W, Sathianpitayakul P, Santanirand P, Ratthawongjirakul P (2023) Implementation of helicase-dependent amplification with SYBR Green I for prompt naked-eye detection of bacterial contaminants in platelet products. Sci Rep 13:3238. https://doi.org/10.1038/s41598-023-30410-8
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Wu XA, Zhang FL et al (2012) Soluble expression and purification of Brucella cell surface protein (BCSP31) of Brucella melitensis and preparation of anti-BCSP31 monoclonal antibodies. Mol Biol Rep 39:431–438. https://doi.org/10.1007/s11033-011-0755-9
Article CAS PubMed Google Scholar
Zhang S-J, Wang L-L, Lu S-Y et al (2020) A novel, rapid, and simple PMA-qPCR method for detection and counting of viable Brucella organisms. J Vet Res 64:253–261. https://doi.org/10.2478/jvetres-2020-0033
Article CAS PubMed PubMed Central Google Scholar
Zheng Y, Hu P, Ren H et al (2021) RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat. Anal Biochem 621:114157. https://doi.org/10.1016/j.ab.2021.114157
Comments (0)